Computer Science .

Jerzy Swiatek

Systems Modelling and Analysis
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L.16. Model based decision making

HUMAN CAPITAL l@ _ cunoeey
ﬂ HUMAN - BEST INVESTMENT! ‘Wroclaw University of Technology L

roject co-financed from the EU Eur ial Fund



@ Master programmes in English
| Wroctaw University of Technology >

at Wroctaw University of Technology

Model in the systems research

Effect:

' - New knowledge,

Hypothesis - New plant,
Methods, algorithms: i - Management rolls
- Projects > Review - New controllers,
- Management -Measurement and
- Control diagnostic devices.
- Diagnosis

A

Identification

plant
Experiment Data

Investigator
Goal:
- investigation, \i
- project, 3 .
- management, Model» Comparison
- control,
- diagnosis,

Adaptation |4
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Example of decision making

Decision: workloads of power plants

/ \ \ Images:
http://ziemianarozdrozu.pl/encyklopedia/67/hydroenergetyka

http://kresy24.pl/showNews/news id/5871/
http://windy-future.info/2009/10/13/large-wind-turbine/

hydroelectric plant nuclear power plant wind turbine Given parameters:
6] (2) (3) _
X X X C,,C,,C; — unit costs of workloads
(2) (3)

Objective is to minimize overall costs: F(x"”,x?,x)=c,x" +c,x? +c,x

Constraints:  — demand must be met: x" + x® +x% > g

— energy production capabilities are limited: 0 < x™ < o, n=123
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Basic ingredients of optimization
task formulation

MO ]

(2)
X
Decision variables: x=| Objective function: y = F(x)

x)

Set of feasible decisions (commonly defined by variables domain and constraints):

xeY

Optimization task: x" — F(x") =min F(x), x" —optimal decision

* "y
x €Y,

min F(x) = —max(— F (x))
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General classification of

optimization tasks
Unconstrained optimization: x4 () =0

9 =R

[

K

Optimization under equality constraints:

T ={xeR° :0,(x)=0,0,(x) =0,...,0, (x) =0, L < S|

h\

Optimization under inequality constraints:

) = {xe R 1y, (x) SO,y (x) < 0,..,p,, (x) < O
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Analytical methods

* Unconstrained optimization

* Lagrange multipliers method — equality
constraints

* Kuhn-Tucker conditions — inequality
constraints
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Numerical methods

We only use information about values of objective function F'(x) for a given value of x.

VARV VARV ERY

Fx) > F(x) > F(x) s -+  >Fx)=FQ)

The general idea behind numerical methods.
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Common types of optimization
tasks

* Linear programming

Decision variables: x € 7 < R° ¢
T : !
Objective function: F(x)=c x= chx(s) c=| .
s=1
Constraints: | Cs -0
- . 1
Cll(l) bm
T 2 _ LT (2)
o (x)=a,x—a, =0, o a® v, (x)=b,x—f <0, b = b,
I — . .
[=12,....L m=12,....M :
(S)
a® b,
i HUMAN CAPITAL it Uty o o IS
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Common types of optimization
tasks

e Quadratic programming
Decision variables: xe€ 7 ¢ R°

Objective function: F(x)=x"Ax+b"x+c

Constraints:
‘dl(n
@, (x) = dsz —a,=0, J - dz(z)
[=12,....L : :
dl(S)

Ae R beR°, ceR

v, (x) :e;x—,Bm <0,
m=12,....M

ELIROPEAN

HUMAN CAPITAL 5
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Common types of optimization
tasks

* Linear-fractional programming

. . . S
Decision variables: x€ Y c R

T
. . a x+b
Objective function: F(x)=— acR,beR, ceR ,deR
c x+d
Constraints: e
— . 1
(1)
pl qm
gﬂl(x)_plx al_ s p . pl Wm x)_qm'x ﬂm— ” qZ: m
1=12,...,L : : m=12,...M ;
(S)
(S)
_pl | _qm |
i HUMAN CAPITAL it Uty o o IS
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Common types of optimization
tasks

* |nteger programming

Decision variables are discrete: 7] =9 N {x(s) c€c¢,s = 1,2,...,S}

MON
Special cases
— -
~ |
N (
: 7 ={ |
\\ XE@C— xl,xz,...,xM
/ )
yol A~ xe@c={x(s)e{O,l},S=1,2,...,S}
S— )’
MO
i HUMAN CAPITAL it Uty o o IS
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x> F(x",0)= min F(x,0) ?7?

xeD, (a))
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Multiobjective optimization

X —vector of decision variables

F(x),F,(x),...,F,,(x) —performance indices

1
!
. »
»
X * *
HUMAN CAPITAL v
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Dynamic optimization

Dynamic process: V.1 = P(y,,x,) n —time step

x, — decision made at »-th time step

vy, — state of the process at n-th time step
Xy

.. 15 Saving Tips by
M Y YN YN+ RateCatcher.com

Yo

The proble is to find optimal sequence of decisions:
* k *
Xos X seeesXys

for which Q(xo,xl,...,xN) is minimal.
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Mathematical preliminaries
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Mathematical preliminaries

Optimization problem: x* — F(x") = min F(x)

xeY,
FA
. . %
Local minima: VE>OEIXGO(X*,8)F(x )< F(x)
- . * / global
Global minima: V__, F(x") < F(x) ocal o
minima /
X
i HUMAN CAPITAL it Uty o o IS
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Mathematical preliminaries

Convex set:

A +(1-x, e, Ae<0,]1>

x X, €T

— convex set , — nonconvex set

Convex function:

Fx, +(1- A)x,) S AF(x,)) + (1= A)F(x,), 1e<0,1>
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Mathematical preliminaries

Pseudo-convex function: F A

Following the Taylor’s expansion of a function, we have:

F(x)=F(x,)+(x —xO)T[VxF(xo)]+ 02(Hx—xOH)

(x=x) [V.F(x)]20 = F(x)>F(x,)

=X
Quasi-convex function:
FA
7 ={xe ¥ :F(x)<a} -convex sets
=x
i HUMAN CAPITAL it Uty o o IS
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Mathematical preliminaries

x(2)
— ] ‘r TN hY 5\ t '
aF §< = ‘/\"/‘L oy ‘—N
(1) N ‘\//‘\ ~ .
ax IR ‘\/’/‘\ -~ N N . . . -
aF el e /7": ~ - N - -

. . _ . I NN &
Gradient: VXF(X) = ax(2) = grad F(JC) L -L /- / o /
. x o ‘(‘ _ _ :\“ L_/«/\ y</\<’
oF - \._ - N4 )/ < e
) - X - TN T N

_8x | T L T e S R

) ) x(l)
o0’F O°F o0’F

6()6(1))2 oxVox® - oxMoxt®
0°F

_ 0°F O°F
Hessian: H(x)=V2:F(x)=| gx@a" a<x(2))z PG PWE)
O0°F O°F O*F
ax®ox® xS ox® a(x(S) )2
i HUMAN CAPITAL it Uty o o IS

Praject co-financed from the EU E

European Social Fund



@ Master programmes in English
' Wroctaw University of Technology R

at Wroctaw University of Technology

Mathematical preliminaries

Hessian properties:

O*F O*F

PRGPWY = G = H is symmetric matrix

If Vx¢onTHx > (0 then H is positive definite

If vx¢onTHx < (0 then H isnegative definite

If Vx¢OSxTHx > (0 then H is positive semidefinite

If ‘v’x¢0SxTHx <0 then H is negative semidefinite
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Sylwester criteria:

[h ] =1,2,...,§ - Hess matrix
j=1,2,....§
f Vs=12,...8 det(H — det [hz ]l L >0 then matrix H is positive
J Nl 2o definite

]—1,2,...,

i€ .. : 12 d [h ] > then matrix H is

! V{ZI’ZZ""’ZS}E{’ ’W’S} et icliis. i} |29 semipositive
VS U definite

Eigen values of matrix H
det(H —h])z 0 h,h,,...,hy -Eigen values of matrix H

If Vs=1,2,....,§ h, >0 then matrix H is positive definite

If Vs=1,2,....§ h, =20 then matrix H is semipositive definite
i HUM'_AN CA?IT&L Wroclaw University of Technology sccsi v
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Vs=1,2,..,5 det(H,)=det ||, . |>0

j=1,2,...,s

_______

H = [hyjli=12,5 = Bz Hay hsz i hss

i=1,2,--S |r oy |
hsy hs; hgg - hggil
i HUMAN CAPITAL et Uit o e o
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V {insiy, i e {2, -, S} det| [y gy [20

jeliyiy, i}

h11 h13 hlS
For example {iy,i,,i,} ={1,3,7} det ([hij]i=1,3,g) = det|h3; hsz hss| >0
=135 hs1  hs3  hsgs

(hyy hyy his hisT "hyy hy; hy3 higT
h21 hzz h23 hzs h21 hzz h23 hzs
H = [hij]i=1,2,---,8 =\|h3y hz, hzz3 - hgg hs3y h3; hizz - hgg
=128 |5 1 A
lhg1y  hgy; hgs  hgsl | hgy hs; hgz - hgg
i HUMAN CAPITAL ot Uty of b S
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Unconstrained optimization

Optimization task: x" — F(x") = min F(x)

x"eY

Assumption: F'(x) is continuous and differentiable.

Necessary condition for x* to be local minima: VXF(x*) =0,

If F(x) is convex function, then above equation is sufficient condition for x” to be

global minima. Fa

V><
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Unconstrained optimization

Second order conditions of optimality:
If H(x")is positive definite at x~ then x" is local minimum.

If H(x")is negative definite at x* then X" is local maximum.

If H(x") is neither negative semidefinite nor positive semidefinite at x~
then x” is not optimum.

If H(x") is positive (negative) semidefinite and not positive (negative)
definite, optimality of x" cannot be determined.
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Example 2.1.1

F(x®,x®@) = 5(x®)" + (x@)* — 4xDx@ — 25D 4 3

_aF(x(l),x(z))_
(1) (2) _ dx (1) _[10x@®= — x(Z)*—z 0 (1)
VxF(x X )|XZX*_ OF (xM x@) _{ 2y (2)* _ 44 (D) (2)
axtz) dlxy=x*

z (2) » x(2)* = 25 (D)%

7z (1) - 10xW* —8x(W* =2 5 x(W* =1 x@r =2 ,* = [1]
10 —4 2

H(x) = U F(x®, x®) = L4 2]

detH,,; = det[10] = 10 > 0

detH,, = det 140 ;L —20-16=4>0

Matrix  H(x) is positively defined then point X is minimum
Macierz H (x)ie st'cto &atmo ok ktorirzatem punkt fm% - minimum

anced from the EU Eurapean Social Fund
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Example 2.1.2

F(x®,x®@) = oc(x(l))z + (x(z))z — 4xWx@ — 251 4 3

-6F(x(1),x(2))-
(1) ,(2) _ ax@) _ [20(9((1)* — 4x @ — 2] _ [0] (1)
VxF(x Jx )lxzx* aF(x(l)’x(z)) zx(Z)* _ 4x(1)* 0 (2)
| 6x(2) d oy =x*
z (2) » x@* = 2xW* -1
(D% _ gy(Dx — W+ = L @+ =2 _|la—4
z (1) - 2ax 8x\Wr=2->x =X —a_4,a¢4 x* = 5
. 2\ 200 4
H(x) = Vg F(xM,x@)) = [4 2] o — 4

detH,; = det[2a] =2a>0->a >0

20 4

]:4a—16>0—>a>4

For a > 4 matrix H(x) is positively defined then point [_1 | - minimum
Dla @ > 4macierz H(x) jest dodatnio okreslona a punkt x* =

HUMAN CAPITAL ey
HUMAR - BEST INVESTMENT! Wroclaw University of Technology s o]
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Example 2.1.2 c.d.

For a > 4 matrix H(x) is positively defined

1

a—4
2

a—4

Point x* = IS minimum (a #+ 4)
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Example 2.1.3

o F(x) =xTAx+bTx +c

7o A - macierz symetryczna, dodatnio okreslona
A — symmetric matrix, positive define
(A1 QAqp 7 Q1s
Ar1 G0y 7 dzs
o A = [aij],;=1,2,...,5 — . . . .
i=1,2,-,S

| Ag1 Qg -+ Ugs.

[ (1)] by ] | _
x(z) bl S — dimensional vectors
o x = %"\ b= :2 , - S -wymiarowe wektory
x (5] b
— T T —
o eF(X) |x=xr = V(X" Ax + b x + ¢ )|x=x* =05 |y=x*
i HUMAN CAPITAL e ety f b S
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Example 2.1.3 c.d.

(A11 A1 7 A1s] [, (D]

s e a
o xTAx =[x x@ 0 ©)] P21 G2z " 28| fx(2)

gy Qsy; -+ Ass] Lx(S)

o XTAx = 12 _1 Qi x (D ()
A(xTAx)] 1 o s < N
oTAx)[ | 9 (g5 s o (D), 0)
29 Vx(xTAx) = 0x(2) = | x(2) (Zi=1 Zj=1al] Xt X )
T2\ | — N
9 Hm.s-»»@(;xéf) _%w%@lz i ) x D))
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Example 2.1.3 c.d.

-9 | | )
dx (1) (Z?‘:l Z?‘:l aij x( l)x(l))
o S S . .

> Vx(xTAX) = ax(z) (Zi=1 Zj=1 aij x( l)x(]))

o | . .
LA x () (ZLLS.:l Z}S"zl aij x( l)x(]))_

i }5‘1:1 a1jx(j) + ZE‘Q:1 ailx(i)_
o U (xT Ax) = Z}?=1 azjx(j) _|_ Z?=1 aizx(i) _
xS ~ (D .. xS —~ (i)
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Example 2.1.3 c.d.

(S (D] Bek) i) T
j=1%1;% i1 ajx®
S .~ () S (D
O Vx(xTAx) — j=142;X + i=1 C?zzx
S ; S i
x(})_ > a51x( ).

| 2.j=1 Asj

aq1 aq» T ais] _x(l)_ aqq a1 T aAgq1 _x(l)_
Az 77 A5 || (2 Q12 Qzz 7 As2| [, @)

dsq1 Asz - AsslIxS)]) las:s asz - ass) xS

Vie(xTAx) = Ax + ATx

dla A = AT Ve(xTAx) = 2Ax
i HUMAN CAPITAL ot Uty of b S
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Example 2.1.3 c.d.
oy
o bTx=[by by -~ bs][*P| = T8, bx®)

| x (S)

axa(l) (Zle bix (]))_

9, S '
29) Vx(bTx): 0x(2) (Zizlbix(j)) — bz =b

d S (j b S -
2 (Y . 1))
9 (Zf=1 bix |
i HUMAN CAPITAL ot Uty of b S
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Example 2.1.3 c.d.

o Ve(xTAx + bTx + ¢ )|y=xr = 2Ax* + b = Og
o XT = —lA_lb
2

woH(Xx) =V, (xTAx + b"x+¢) =V, (2Ax + b) = 24

> Macierz Hessa dodatnio okreslona bo A jest dodatnio okreslona

Hess matrix is positively defined because
matrix A is assumed to be positively defined

HUMAN CAPITAL unoeean
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Basic formulation of the optimization
problem

D ]

(2)
X
Decision variables: x=| Objective function: y = F(x)

x)

Set of feasible decisions (commonly defined by variables domain and constraints):

xeY

Optimization task: x" — F(x") =min F(x), x" —optimal decision

* "y
x €Y,

min F'(x) = —max(— F (x))

HUMAN CAPITAL 5 o
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General classification of

optimization tasks
Unconstrained optimization: +@a

p(x)=0
. g = RS

;<1>

Optimization under equality constraints:

T ={xeR° :0,(x)=0,0,(x) =0,...,0, (x) =0, L < S|

h\

Optimization under inequality constraints:

) = {xe R 1y, (x) SO,y (x) < 0,..,p,, (x) < O
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Analytical methods

* Unconstrained optimization

* Lagrange multipliers method — equality
constraints

* Kuhn-Tucker conditions — inequality
constraints

HUMAN CAPITAL I sooarines
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Optimization under equality
constraints

Optimization task: x" — F(x) = Ipi§ F(x)

T ={xeRS: ¢,(x)=0,0,(x)=0,...,0,(x)=0, L<S |

HUMAN CAPITAL i AR
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Optimization under equality
constraints

Locally optimal solution satisfies
condition:

V,F(x)+ AV 0(x) =0,

where

A e R - Llagrange multiplier
For multiple constraints:

L
V. F(x)+ Z 4,V ¢, (x) =0y
=1
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Optimization under equality
constraints

* The method of Lagrange multipliers

Lagrange function: A (%) ]
L A 0,(x)
L(x, ) = F(x)+ Y Ay (x) = F(x)+ 2 p(x) A=l =]
= : :
Necessary conditions of optimality: A, ] L@ (X) |

V.L(x,A)| . . =04
V,L(x,A)|. . =0, Ifandonlyif  rankG(x)=rank [G(x) | -V F(x)]

Where: G(x)=[V @ (x) | V.o,(x) i - i V. g, (x)]

HUMAN CAPITAL 5 o
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Optimization problem under equality constraints
Lagrange’ a multiplayers metod
The above system of equation may have several solutions

Second order nesesery conditions:

let: H, (x) = VxxL(x, /1)
If H, (x*) Is positively defined in the point X
then x’is local minimum

If H I (x*) Is negatively defined in the point X
then y*is local minimum

If F(x) is convex function, and constrains are linear one i.e. have the form
¢,(x)=p/x—a,=0, [=12,...,L thentheabove system of equation
have one solution and it is optimsl point

HUMAN CAPITAL 5 o
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Explanation of necessary conditions

s> xX1,X5 = F(x3,x3) = min F(xq,x5)
With constans =~ *1*2
s Przy ograniczeniu @(xq,x) = 0

s> @(x1,x2) = 0 = x5 = Plxq)
s> X1 — F(x{,ljj(x’l")) = n;in F(xlljj(xl))

dF(x1P(x1)) _ 6F(x1,x2)+6F(x1,x2) dyr(xq) _

5 0
o axl axl axz dxl
s> Pochodna funkcji rozwiklanej
0@(x1,X2)
o, AWxn) _  9xq Derived from the unraveling function
T 9xq O (x1,x2)
axz

HUMAN CAPITAL i AR
i HUMAR - BEST INVESTMENT! Wroclaw University of Technology s o]

Project co-financed from the EU European Social Fund




@ Master programmes in English
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Explanation of necessary conditions

3 5 dp(x1,x2)
F F
- (x1;x2)+ (xX1x2) [ 0xg =0
dxq dxy 0@ (x1,X2)
axz
let dF(x1,x2)
.. A= — 0x2
D OZl’laCZHly —_— acp(xl’xz)
axz
0F(x1,x op(x1,x
- (xq 2)+7\ @(xq1,X2) =0
6x1 6x1
0F(x1,x op(x1,x
o (xq 2)+7\ @(xq1,X2) — 0
axz axz
o X = Plxy) = @xq,x2) =0
i HUMAN CAPITAL e ety f b S
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Explanation of necessary conditions

L(x1,x2,A) = F(xq1,x5) + Ap(x1,x5)
OL(x1,X2,A) __ 0 — OF(x1,X2) +A O@(x1,X2) __ 0

&

\J/

)29 ]

x4 O0x4 0x1
o aL(xl,xz,A) — O N aF(xl,xz) +A a(P(xl,xZ) — O
dx> dx> x>
aL ’ !A
50> (x(;lxz ) -0 - p(x1,%x5,) =0
«> Ogolniej ~ More general
V. L(x,A)[. . =0
V/IL(.X, ﬂ«) x*’ﬂ* — OL
i HUMAN CAPITAL ot Uty of b S
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Optimization under equality
constraints

Locally optimal solution satisfies
condition:

V,F(x)+ AV 0(x) =0,

where

A e R - Llagrange multiplier
For multiple constraints:

% F(x)+Z/1V @, (x)=0,

V. L(x, /1)\
HUMAN CAPITAL AR
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Optimization under equality
constraints

 The method of Lagrange multipliers —example 1

@

>

X

F(x)= (x(l))z + (x(z))Z

p(x)=xV +x» -4=0

(N

L(x,A)= (x(l) )2 + (x(z))2 + i(x(l) +xW - 4)

HUMAN CAPITAL uncrens
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Example 2.2.1

o Lo D) = (¢ @) + (x @)+ Ax® + x@ — 4)

[ OL |
| |z 2x(1) + A lO] (1)
o Bl = |77 =12 T 7\] 2)
ax@)

o L) ===x® 4+ x@) —4 =0 (3)

oz (1) - x<1>= -2,z (@ x®=-7

A A ,
w7z (3) > (_E) + (— E) -4=0 czyli A=-4
' 2 2 ’ 2 2

Project co-financed from the EU European Social Fund
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Example 2.2.1 c.d.

(1)
. VxL(x, A) — dx @ _ [Zx + A

oL 2x (2 4+ A
10x (@)
0%L 0%L ]
92, dxWax(2) 2 0
w Hy = Vi L(x,A) = 6§L xazLx N [0 2]
Ldx (2 gx (1) azx(z)"
?o)detHLll d@t[]:2>0, detHLzzzlg g]:2X2=4>0
Matrix ) Is positively defined
s» Macierz H; = [ 0 2] jest dodatnio okreSlna

Point iS minimum

so Punkt @:”1’2‘1”‘1 mini m -

Prosje anced from the EU Eurapean Social Fund
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Optimization under equality
constraints

 The method of Lagrange multipliers —example 2 (irregular)

F(x)= (x(l))z + ()c(z))2

p(x) =[x ~(x"-1) =0 ﬁ

Lo 2) = (x P+ (e P 4 AP (0 - 1) ) 0

@(x)

N>

)

HUMAN CAPITAL ey
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Example 2.2.2
oL = GO + @) AP - 60 - 1)°)

9 VXL(X, 7\) =

S
ox™ Iz;»c(ﬂ —3A(x® —1) ] l ] (1)
0

ai]fn 2@ 1+ 2@ (2)

oL 2 3
o ML) === (x®) - (x® -1)" =0 (3)
oz (2) > 2(1+)x@=0 czyli x(@)=0,
oz (3) > (0)2 = (xW — 1)3 =0, czyli x(M=1,
oz (1) > 2x® = 33 (x® — 1)*= 2x1-3A(1 — 1)2=2 # 0

o Sprzeczposc ?7? = . Contradiction

HUMAN CAPITAL B it
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Optimization under equality
constraints

 The method of Lagrange multipliers — example 2 explanation

L
V.L(x,A) =V, F(x)+Y 4V 0,(x) = 0

/=1

G =[V.p@x) @ V) P D V)]
V.F(x)+G(x)A=0 G(x)A=-V _F(x)
Unambiguous solution exists if and only if rank G(x) =rank [G(x) : —VxF(x)],

which is always true as long as F’'is convex and ¢, are linear.

How to find irregular solutions?

HUMAN CAPITAL 5 o
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Optimization under equality constraints
Lagrange’” a multipliers method
If F(x) is continuous, differentiable and convex function and constraints
@, (x),¢2 (x),,,,,(pL (x) are linear then system of equations:

V_L(x,A)

x4 - OS
V. L(x,/A)

x A - OL

has one solution and it si solution of optimization task.

The above system of equations is necessary and sufficient condition for optimal
solution

HUMAN CAPITAL uncrens
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Optimization under equality
constraints

 The generalized method of Lagrange multipliers

Generalized Lagrange function:
L(x,A,A))=A,F(x)+ ZZL; A0, (x)
Necessary conditions of optimality:
V.L(x, A4 4) ., =0

VLA A, =0,

HUMAN CAPITAL uncrens
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Optimization under equality
constraints

* The generalized method of Lagrange multipliers
V. L(x,2,20) = 3,V F(x)+ > AV 0,(x) =0
=1

L L
1° A#0 V. F(x)+ Z%Vx% (x)=05 = V. F(x)+ Z/lzrvx% (x) =0y

=1 "% /=1

L
=1V _F(x)+ Zﬁlvx(o, (x)=0g We obtain regular solutions.
=1
L . . .
20 4, =0 Zﬁzvx% (x)=0, We obtain irregular solutions.
/=1

Second order condition of optimality requires analysis of H(x,1,4,)= V> L(x,4,4,).

HUMAN CAPITAL 5 o
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Optimization under equality
constraints

 The generalized method of Lagrange multipliers —

—example 2 once again X 4
F(x)= (x(l) )2 + ()c(z))2 2(x)
—(x@F —(v -1} =0
ettt o)
% D
N1
o
L2 2) = A (<O + (@) J 2((x®F ~(x 1) )
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Example 2.2.2
o L) = A ((x(l))z L (x(z))z) N )\((x(z))z (O 1)3)

[ 0L | 5
. VXL(X, 70 — dx (1) — 27\035(1) — 37\(9((1) — 1) =lO] (1)
5 20x®@ + 2@ | 10l (@)
o BLED) = 2= (x@)" —(x®-1)" =0 3)
29 Dla A.0=1
For © oL

(1) _ (1) _ 1)?
o V.L(x, ) = agf) _ |2x 3A(x 1) =10] (1)
2x2) 1 22 (@) 0 (2)

(2)
_6{6 d As before contradiction
so Jak popﬂe&mm“ sprzdgdzno

ELROPEAN
VDS C o rectnoiog soenrs

wed from the EU European Social Fund
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Example 2.2.2
s L(x, D) = A ((x(l))z + (x(z))z) + ;\((x(z))z _ (x(l) _ 1)3)

[ 0L | 2
D] |22x® —3A(xM -1 0 1
o VeL(x,A) = achl - " (2) (X (2) ) =[0] EZ;
5@ 2Mox ) + 2Ax
o BLExA) = 2= (@) =(x® -1)" =0 (3)
129 Dla )k0= O
For o
@| _ 3a(x® - 1)°| _[0] (D)
- wa = 5 - | {9
0 2
ol e (2)




@ Wroctaw University of Technology
Exa mple 2.2.2

o oL(x, ) = 7o =

oL
| 9x(2) ]

129 HL — Vxx L(x,?k) —

229 — 6A(x™M — 1)
0

2D

Master programmes in English
at Wroclaw University of Technology

220x @D — 3A(x® — 1)
2X0x ) + 22x ()

0%L 0%L
azx(l) ax(l)ax(z) .
2L 2L |

L 9x(2)9x (1) 92x@ |

0 _ 0O O]

20y + 2A 0 2A

Matrix H, is semi positively defined then point x = [(1)] - minimum

s> Macierz Hj, jest dodatnio p6t okreslona

s> Punkt aﬂznm{~ CA]'w mmlrﬁlam I e

""" al Fund
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General classification of
optimization tasks " |w-

Unconstrained optimization: 7] = R° ‘é

Optimization under equality constraints: .

»

P ={xeR* 1 (0)=0,0,(1)=0,...,(x) =0,L < S} =

Optimization under inequality constraints: >
X

T ={xe Ry, (x) <0y, (x)<0,...,p,, (x) <0}

»

(1)

HUMAN CAPITAL i AR
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Optimization under inequality
constraints

Optimization task: x" — F(x) = Iyi?rﬂl F(x)

9 = {xe@s :wl(x)SO,l//z(x)SO,...,!//M(x)SO}

@
x A
p,(x)<0
‘/ Yy, (x)<0
x)<0
()
i HUMAN CAPITAL it Uty o o IS
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Optimization under inequality constraints

Optimization task

x" — F(x")=min F(x)

p
xeY,

T ={xe R : y,(x) <0y, (x)<0,...,p,, (x) <0, |

x@ wi(x) <0
w,(x)<0

>
>
L Voo
HUMAN CAPITAL v
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Optimization under inequality constraints

Inactive constraint Active constraint

p(x7)<0 p(x)=0

(2), (2)

X

v

L w(x")<0 p(x")=0
x(l) (1)

HUMAN CAPITAL o
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Optimization under inequality constraints

1 Kuhn-Tucker conditions ]
agrange function: H
Lo, p) = F)+ 4y (x) < Lx,u)= F<x>+2umwm<x> | #o
| Hy
Necessary conditions of optimality:
VLG ) =0
4V L(x, u)\ y
v, L(x, ,u)‘ . <0
| [ f | >0
a, B 20, If solution is regular
a= . p= :
OC.S B asf=V A <P

HUMAN CAPITAL r_ uncrens
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Optimization under inequality constraints

Kuhn-Tucker conditions

M
V L(x,u)=V F(x)+ Z u Vi (x)=0

H'V L(x, 1) = "y (x) = Zumwm(X) 0

v L(x )= l//(x) < Ou iy (x)+ oy, () +.+ g, (x) =0

120y Vo (<0 Y u >0
Vo, (x) =0
s
.y, (x) e =0 m=12,....M
v, (X) e <0 m=12,....M
w >0 m=1,2,....M

HUMAN CAPITAL r_ uncrens
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Optimization under inequality constraints

Kuhn-Tucker conditions
Lx, ) =F(x)+ w,y,, (x)
V. Lx,u)=V F(x)+u, V. v, (x)=0

'V L(x, 1) = v, (x)=0
V, L) =, (x) <0

u, =0
m - th inactive constraints m- th active constraints
#, =0 y,(x)<0 t,>0 w,(x)=0
V,L(x, 1) =V F(x) =0, V. L(x, ) =V F(x) + 14, 7, (x) = 0
VL) =w, (x)<0 V. Lx, )=y, (x)=0
Like without constraints Like with equality constraints

HUMAN CAPITAL uncrens
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Optimization under inequality constraints

Inactive constraint Active constraint

v, (x) <0 v, (x)=0

(2), (2)

X

10 MO

X
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Optimization under inequality constraints

Kuhn-Tucker conditions

Lix,)=F(x)+u,y, (x)
V.Lx,u)=V F(x)+un V. y (x)=0
'V L(x, 1) = p,p, (x) =0
V, L, )=y, (x)<0
My 20

U, = 0 v, (x) < () m -th constraint is inactive

u >0 y (x) =0 m -th constraint is active

HUMAN CAPITAL i AR
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Optimization under inequality constraints

Kuhn-Tucker conditions
Example 1

F(x)=(x"=2f + (x> -2f
v, (x)=x"-1<0

w,(x)=x? —1<0 \

L) = (e —2F + (s - )+M(x<l>_1)+ﬂ2(x<>_1
i HUMAN CAPITAL octow Ushety o ety e
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Example 1.

o LGon ) = (x® —2)% + (x@ — 2)% 41, (x® — 1) + pp (x@ — 1)

(1) _

2(x@ —2) + p, (2)
(1) — —
(™ —1) =0 (3)
<D TV L X, ~
2 A (e,pn ) IJZ(x(z) _ 1) -0 (4)
(1) — )
(x®—1) <0 (5)
o ublon )= (x® —-1)<o0 (6)
=D —_ Ml 2 0 (7)
T =0 (8)

Fraject co-financed from the EU Eurapean Social Fund
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Example 1. c.d.

> 19 iy =0 —-1<0??),u, =0(x@® —1<07??),
z (1) - 2(xM—-2)=0 - xW =2
z (2)> 2(x@ —-2)=0 - x@ =2
z (5) - (2—1) =1 = 0 sprzcznosé z (5)  contradiction
z (6) » (2 —1) =1 = 0 sprzcznoéé¢ z (6)  contradiction

> 20 1 >0 —-—1=0??),u, =0 —1<07??),
z B)->mwmG®-—1)=0/p; > (xP -1)=0-xD =1
z (1)-»2Q0—-2)4+pu; =0- =2

z (2) > 2(x® —-2)=0 - x@ =2

z (6) - (2 —1) =1 = 0 sprzcznosé z (6) contradiction

HUMAN CAPITAL ey
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Example 1. c.d.

o 3% =0(xM-1<0??),u, >0x@ -1=027?),
z (1) - 2(xW-2)=0->xD =2

z (5) > (2 —1)=1>0sprzcznoé¢ z (5) contradiction
z (4) > pp(x@ —-1)=0/p; » (x@ -1)=0-x@ =1
z 2)-20-2)+pu, =0-pn,=2

o 40 i >0(xM=-1=0?2?2),u, >0x@ -1=027?),

z (3)->u(x®-1)=0/p > (xP=-1)=0-x® =1
z(1)-201-2)+puy =0->py=2

z (@) ->u(x@P-1)=0/y->x@P-1)=0-xM =1

z (2)-2(1-2)+ 1, =0-> 152 point x* = [ﬂ optimal solution

Punkt x = ﬁ]‘%ﬁhﬁa rownBllia-ijestsezwigzanietti Elllania

| . .
=) favg Ligi T
nanced 1 the EU BEurcpsan Social Fund
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Optimization under inequality
constraints

Optimization task: x" — F(x) = Iyi?rﬂl F(x)

9 = {xe@s :wl(x)SO,l//z(x)SO,...,!//M(x)SO}

@
x A
p,(x)<0
‘/ Yy, (x)<0
x)<0
()
i HUMAN CAPITAL it Uty o o IS
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Optimization under inequality constraints

Kuhn-Tucker conditions

Lagrange’ a function :

L(x,u) = F(x)+ @' w(x) & Lx,p)=F(x)+ ), w,(x) |

K, | - Vector of
: Lgrange’ a
multiplayers

where: ;1 =
Neccesery conditions:

MU
V. L(x, 1) -

x*’u* — OS

u 2 OM & The solution is regular solution

o = . ﬂ =
N e
. MA}(: VE < ELIRCPEAN
; E::\'m—ncsnwﬁrﬂmrﬁ = VSZI,...,S'WI Favs Liniversity of Technology o
S Project co-finan f
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Optimization under inequality constraints

Kuhn-Tucker conditions
Example 1

F(x)=(x"=2f + (x> -2f
v, (x)=x"-1<0

w,(x)=x? —1<0 \

L) = (e —2F + (s - )+M(x<l>_1)+ﬂ2(x<>_1
i HUMAN CAPITAL octow Ushety o ety e
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Optimization under inequality constraints

. Kuhn-Tucker conditions
Example 2 —irregular

F(x)= (x(l) _ 2)2 + (x(z> )2
(1) =5+ (0 1] <0 o
w,(x)=—x* <0

L(x,A)= (x(l) _ 2)2 n (x(z))z +u (x(z) n ( 0 1)3 )_ /sz(z)

HUMAN CAPITAL i AR
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Example 2.

o LGo,p ) = (@ — 2)2 + (x@ — 2)2 + 1y (x(z) + (x® — 1)3) — pyx @

2
Y VLo ) = lz(x(l) —2)+ 3, (x® —1) ] _ [8] (1)

2(x® — 2) + s — s 2)

(2) 1 1)) =

x4+ (x 1 =0 3

_sz(ZJ =0
(2) 1 _— 1)

o VuL(op ) = x@ + (x 1) <o (5)
2] — H1 = 0 (7)
Hz = 0 (8)

i HUMAN CAPITAL e ety f b S
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contradiction

Example 2.

The above system o equation ought to be solved as before. For each
cases it can be shown contradiction.

We will show that solution x = m which can be notice from graphical
illustratio does not fulfill system of equations

HUMAN CAPITAL i AR
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Example 2.

For we obtain

= Dlax = [(1)] otrzymujemy

2(1 —2) +3p;,(1 —1)? = =2 # 0 sprzecznot
27} V L(x; ) - [
x H 2(0—2)4‘!»11_“2:0
| . @O +@—-13)=0 (3)
(=) M VML(X;M ) _MZO =0 (4)
_lo+@-13<o0 ()
£ VML(X’ L ) - —0<0 (6)
. M: "-’ll 2 0 (7)
nz =0 (8)

Rozwigzanie nieregularne

i HUMAN CAPITAL
HUMAN - BEST INVESTMENT!

Praj

Irregular solution

] e
Ll Wroclaw University of Technology

ject co-financed from the EU Eurcpsan Social Fund

contradiction

(D)
(2)



@ Master programmes in English
' Wroctaw University of Technology R

at Wroctaw University of Technology

Optimization under inequality constraints

Feasible directions

_ — x(z)u
dl X, =X, +7-d
d
d=|"2 — direction in RS .
: d/v 1
d X9
_dS_ .
O
Feasible directions: Active constraints:

D(x)z{de@is = b x+rde@} I(x)={me{l,2,...,M}:y, (x)=0]

@ @y W5 (x)

X3 [(xl) =
20 I(x,) ={2,3}

v, (x) I(x3) = {1}
Wroclaw University of Technology on

1
x!

"

XA Xy X

Project co-financed from the EU European Social Fund
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Optimization under inequality constraints
Kuhn — Tucker rolls

Active constraints — analytical conditions?

D(x):{de@%‘“ dr x+m’e@c}

‘v’me](x) x
tJ l//m(x):()
X'=x+wdeY, t>0 (¥)<0
v, (x')<0
X
v, () =y, (xtad) =y, () +ad"V y, (x)+ 0, ([«]) < 0 0

d'V iy (x)<0 >0

d'V iy (x)<0 -analytical condition

HUMAN CAPITAL uncrens
i HUMAR - BEST INVESTMENT! Wroclaw University of Technology s o]
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Optimization under inequality constraints

Feasible directions

vd € D(x) A Vme](x)

(2) o

How to determine the set of feasible directions? "
Active constraints v, (x)=0
X'=x+1wd €Y
v, (x')<0 * >
v, () =y, (et ad) =y, (0)+ dd "V, (x)+ Oy (|d]) < 0 !
TdTwam (x)<0

Vd e D(x)AVmE I(x) = dTVme (x) <0 - analytical condition

D(x)={d e RV, el(x), d'V y,(x)<0}  D(x)#D(x)

HUMAN CAPITAL uncrens
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Optimization under inequality constraints

Feasible directions
Example

xP—-1<0

x4

x?—1<0

/)

HUMAN CAPITAL i AR
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Optimization under inequality constraints

Example 1 Kuhn — Tucker rolls
v, (x)=x" -1<0 xt
w,(x)=x?-1<0

A

] (41 77

il swirl of2] 77

d'V v, (x)=|d, d,] l}zl-lerO-szO = d,

10

// 1 x(,l)

T . '_O _
d'V_w,(x)=ld, d4,] |=0-d,+1-d,<0 = d,<0

1

HUMAN CAPITAL uncrens
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Praject cc I from :

Project co-financed from the EU European Social Fund



@ Master programmes in English
| Wroctaw University of Technology —

at Wroclaw University of Technology

Optimization under inequality constraints

Feasible directions
D(x)={d e R*:V, e I(x), d"V y, (x)<0}

YD) (x) # D(x) leads to irregular case

NEN
F(x)= (x(l) — 2)2 + (x(z) )2
v, (x)=x"% — (x(l) — 1)2 <0
V() = —x? <0
i HUMAN CAPITAL i Uty o o S
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Optimization under inequality constraints

Kuhn — Tucker conditions
Attention: Not all direction, which fulfils condition dTwam (x)<0is feasible direction. It

mays generate irregular solution

D(x)={d e R :V, el(x), d"V y,(x)<0} D(x)# D(x)

() =x + (" -1 <0 p,()=—x?<0  F(x)= (“) 2f +(x® )

o ] o

vxwl(x>:f(x(”‘l)z SHEZCEM

1 | x{l -1

d'V y (x)=[d, d,] |=0-d,+1-d,<0 = d,<0

L d. =
g d . d 0d-1d,<0 = d,20
wa(x)=| EM_MJ 'S IR - d, — any

Fraject co-financed from the EU Eurapean Social Fund
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Optimization under inequality constraints
Kuhn — Tucker conditions

F(x)= F(xy+ad)= Flx,)+7(V,F(x)) d + O (|d])

If d such that: (VXF(X))Td <0 fo F(x) < F(xo) down N\
Then

Let us divide set of directions @(x) = {d eR VY, el(x),d V. y, (x)< O} :

G(x)={deR Y, el(x), d'V y,(x)<OIA (V. Fx)dz0 u /

Tx)={deR v, el(x), d'V y,(x) <A (V F(x) d<0 down \

HUMAN CAPITAL ey
i HUMAN — BEST INVESTMENT! “? Wroclaw University of Technology s o]
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Optimization under inequality constraints
Lagrange function: Kuhn —Tucker conditions

L(x, 1) = F(x)+ p w(x) = L(x, 1) = F(x)+ Z W, (X)

Kuhna — Tucker theorem — necessary optimality conditions:

If x* is local minimum of optimization problem with inequality constraints, functions
F, W, Y, .., \Y,, are continuous and function F is differentiable then there
exists set of Lagrange ,u* such one that together with x™ fulfils

V _L(x,u)

x*”u* — OS

* Regular solution

o  D@={deR v, el(x), d'Vy,x) <AV Fix)d<0=0

Fraject co-financed from the EU Eurapean Social Fund
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| A —
Optimization under inequality constraints Kuhn — Tucker rolls

Regularity Conditions

1. Karlin: constraints wl(x), Wz(x), Wy (x)— linear

2. Slater: constraints ¥/, (x), W, (x), Wy (x) - convex functions and feasible set is

not empty
3.Fiacco — Mac Cormica: in the optimal point gradients of all active constraints are linear

independent, i.e.: . .
YV me [(x ) Vi, (x )x:x* are linear independent

4. zangwil:  P(x")=D(x")

5. Kuhna — Tucker’a: for each direction d € @(x ) there exists regular curve starting in
the point " tangent to that direction

€ (‘9)—
VdeD(x") Fe(9), 9€lo,1]
e(0)=x" | e(9)= E (9)
e(3)e D, VSE[O,I] . '
de(S)‘gzo o i 5(9)_

Project co-financed from the EU European Social Fund
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Irregular solution - Fiacco — Mac Cormica roll

v )=+ -1 <0 v()==x?<0  F)="-2f +[(x?]

SO I |

Consrtaints1 i 2 are active

Vo (x)= {3()6(1) ) 1)2}

1

NEIN

Irregular

o) ) m V.alx)= LOJ solution

Gradients of constraints are linearly dependent

In the point x = [1] Fiacco — Mac Cormica roll is not
01" fulfilled

HUMAN CAPITAL uncrens
i HUMAR - BEST INVESTMENT! Wroclaw University of Technology s o]
Project o« 1 f 3

Project co-financed from the EU European Social Fund



@ Master programmes in English
| Wroctaw University of Technology —

at Wroctaw University of Technology

Optimization under inequality constraints
Kuhn-Tucker conditions

Sufficient condition of regularity:

F.w,v,,....,y,, —continuous and differentiable

' —pseudo-convex
ViW,y,...,¥,, —dquasi-convex
i EMI E\-ﬂ[-r?ll- Wroclaw University of Technology socA. v

Fraject co-financed from the EU Eurapean Social Fund



@ Master programmes in English
' Wroctaw University of Technology R

(2)

4

at Wroctaw University of Technology

General classification of

optimization tasks
Unconstrained optimization: x4 () =0

9 =R

[

K

Optimization under equality constraints:

T ={xeR° :0,(x)=0,0,(x) =0,...,0, (x) =0, L < S|

h\

Optimization under inequality constraints:

) = {xe R 1y, (x) SO,y (x) < 0,..,p,, (x) < O

HUMAN CAPITAL uncrens
i HUMAR - BEST INVESTMENT! Wroclaw University of Technology s o]
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Optimization under inequality constraints
Kuhn — Tucker rolls

Necessary and sufficient conditions :

If functions F(x), W, (x), W, (x), Wy (x) are continuous and differentiable and
function F(x is pseudo — convex function , and constraints 4 (x), '$ (x), Wy (x)
are guasi — convex function then system of equations :

V _L(x,u) T 0,
'V L(x, 1)
V L(x, 1) R 0,

u =0,

X U

Has one solution and it is the solution of the optimisation task with inequality
constraints

HUMAN CAPITAL 5 o
i HUMAR - BEST INVESTMENT! @ Wroclaw University of Technology o
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Optimization under equality
constraints

* The method of Lagrange multipliers

Lagrange function: A (%) ]
L A 0,(x)
L(x, ) = F(x)+ Y Ay (x) = F(x)+ 2 p(x) A=l =]
= : :
Necessary conditions of optimality: A, ] L@ (X) |

V.L(x,A)| . . =04
V,L(x,A)|. . =0, Ifandonlyif  rankG(x)=rank [G(x) | -V F(x)]

Where: G(x)=[V @ (x) | V.o,(x) i - i V. g, (x)]

HUMAN CAPITAL 5 o
i HUMAR - BEST INVESTMENT! @ Wroclaw University of Technology o
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Optimization under inequality constraints
Lagrange function: Kuhn —Tucker conditions

L(x, 1) = F(x)+ p w(x) = L(x, 1) = F(x)+ Z W, (X)

Kuhna — Tucker theorem — necessary optimality conditions:

If x* is local minimum of optimization problem with inequality constraints, functions
F, W, Y, .., \Y,, are continuous and function F is differentiable then there
exists set of Lagrange ,u* such one that together with x™ fulfils

V _L(x,u)

x*”u* — OS

* Regular solution

o  D@={deR v, el(x), d'Vy,x) <AV Fix)d<0=0

Fraject co-financed from the EU Eurapean Social Fund
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Saddle point

Saddle point

L(x*,,u*)SL(x,,u*) Vx e D(x) c R°
L(x*,y) L( *,,u*) Yu>0,,

i HUMAN CAPITAL (x Ww )u niversity ﬁ%% max L *ﬂh
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Saddle point

Point (x*,,u*)is the saddle poin (x* e D(x), u= OM) S

1. x* —minimizing L(x, 1)
2.y, [x)<0 m=12,..,M
3. ,u*wm(x*):O m=12,....M

If (x*,lu*) is the saddle point Lagrange’a function L(x, 1) then (x*,y*) is the solution
of the optimization task:

x" — F(x")=min F(x)
x"eY
D ={xe RS 1y, (x) <0y, (x)<O0,...,,, (x) < Of
i HUMAN CAPITAL it Uty o o IS
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Special case

x" — F(x")=min F(x)

x" €Y,

@Cz{xe@S:XZOS,w(x)SOM}

L{x, 1) = F(x)+ "y (x)

vV L(x, ,u)(x*’ﬂ* >0 VﬂL(x,ﬂ)(x*,ﬂ* <0y
T . T .
x VXL(X’/JX)C*,IU* _O ,Ll VIUL(X’IL!XX*,/U* _O
x>0 u =20,
i HUMAN CAPITAL i Uty o o IS
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9 ={xe@s :xZOS,W(x)SOM}
L(x, u)=F(x)+ u"y(x)
={xe Z:ylx) <0, -x <04}
L(x. 2, 1) = F)+u y(x) — ' x

Kuhn-Tucker conditions

HUMAN CAPITAL 5 oo T
HUMAN - BEST INVESTMENT) Wroclaw University of Technology
Project ¢c 1 the EU BEurcpsan Social Fund
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L(x,u,p") =F(x) + uTy(x) —u'Tx

M
VoL O 1) = FCO + ) i Vayn () = ' = 0

m=1

v Lo p') = plylx) =0
LG ') = w(x) < O
VeL(x,u,u’) = —x < Og

HUMAN CAPITAL v
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Special case

x" — F(x")=min F(x)

x" €Y,

@Cz{xe@S:XZOS,w(x)SOM}

L{x, 1) = F(x)+ "y (x)

vV L(x, ,u)(x*’ﬂ* >0 VﬂL(x,ﬂ)(x*,ﬂ* <0y
T . T .
x VXL(X’/JX)C*,IU* _O ,Ll VIUL(X’IL!XX*,/U* _O
x>0 u =20,
i HUMAN CAPITAL i Uty o o IS
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Special case

x" — F(x")=min F(x)

x"eY

9 :{XE@S :CD(X):OU l//(x)SOM}

L(x, 2, 1) = F(x)+ 2 o(x)+ 1"y (x)

V.L(x, A1) . =0
VL) =0,
w2 =0
VﬂL(x,ﬂ,,,u)(x g S 0,
e Bz,

urapean Social Fund
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I ={xe R :p(x)=0,,y(x)<0,, |
L(x, A, 1t)=F(x)+ A p(x)+ 1"y (x)
ex)=0,=0kx) <0,n—@x) <0,

=1 € Fip)<0,n—0k) <0, y(x) < 0y}

L, N A 1) = FOO)+A @) =1 @ (x)+uTy(x)

Warunki Kuhna-Tuckera

HUMAN CAPITAL v
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Z; D l\x ﬁm?{é@h Ty \zx’ + L

V. LG, L, A, ) =

L L M
= P+ ) M@ () = ) Mil@i() + ) Ty, (1) = 0s
=1 =1 m=1

MNULOGMLN, ) =AM e(x) =0
ANV LG, W) = =2 e(x) =0
MTVML(x, A, ) =plyx) =0

VAL(x, L, A, 1) = @(x) <0,
VL, A p) = —p(x) <0
VLo AN, 1) = w(x) < Oy

!
wRaly , A =y, 1020 = [
uurMm:smmr-L ) . gllw T rsitymmiReehnol M

Fraject co-financed from the EU Eurapean Social Fund
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I ={xe R :p(x)=0,,y(x)<0,, |
L(x, A, 1t)=F(x)+ A p(x)+ 1"y (x)
ex)=0,=0kx) <0,n—@x) <0,

=1 € Fip)<0,n—0k) <0, y(x) < 0y}

L, N A 1) = FOO)+A @) =1 @ (x)+uTy(x)

Warunki Kuhna-Tuckera
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Analytical methods

Disadvantages
It is hard to apply them if:

F,@,iy arenonlinear
dim(x) is large

They cannot be applied if:
F,@,y are not differentiable

F is not given by formula and it may only be
measured for requested value of X
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Thank you for attention
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