Computer Science

Jerzy Świątek

Systems Modelling and Analysis

Choose yourself and new technologies

L.24 Summary

Model in the systems research

Model in the systems research

- Conceptual models
- Physical models
- Analog models
- Mathematical models
- Computer models

Identification Task

Identification task

- 1. Determination of the identification plant
- Determination of the class model
- 3. Experiment organization
- Determination of the identification algorithms
- 5. Identifiers realization

Typical identification tasks

Plant in the class of model

Choice of the best model

- Klass of models
- Given performance index

- Full probabilistic knowledge
- First type regrsesion
 - Second type regression
- Unknown probabilostic knowledge
- · Performance index estimatin arameter estimation of the probability distribution
- Probabilit ditribution estimatoin

Determination of the plant parameters (3)

Measurements:

$$U_N = [u_1 \quad u_2 \quad \cdots \quad u_N],$$

$$Y_N = \begin{bmatrix} y_1 & y_2 & \cdots & y_N \end{bmatrix}$$

Determination of the plant parameters (4)

System of equations:

$$y_n = F(u_n, \theta), \quad n = 1, 2, ..., N$$

can be written

$$\begin{bmatrix} y_1 & y_2 & \cdots & y_N \end{bmatrix} = \begin{bmatrix} F(u_1, \theta) & F(u_2, \theta) & \cdots & F(u_N, \theta) \end{bmatrix}$$

For

$$[F(u_1,\theta) \quad F(u_2,\theta) \quad \cdots \quad F(u_N,\theta)] \stackrel{df}{=} \overline{F}(U_N,\theta)$$

we can rewrite given set of equations:

$$Y_N = \overline{F}(U_N, \theta)$$

Choice of the best model Deterministic problem

Choice of the best model based on the noise free measurements

Problem formulation

Performance index:
$$Q_N(\theta) = ||Y_N - \overline{Y}_N(\theta)||_{U_N}$$

where:
$$\overline{Y}_N(\theta) = [\Phi(u_1, \theta) \quad \Phi(u_2, \theta) \quad \cdots \quad \Phi(u_N, \theta)]$$

$$Q_N(\theta) = \sum_{n=1}^N \alpha_n q(y_n, \overline{y}_n) = \sum_{n=1}^N \alpha_n q(y_n, \Phi(u_n, \theta)) \quad \text{e. g. :} \quad Q_N(\theta) = \sum_{n=1}^N |y_n - \overline{y}_n| = \sum_{n=1}^N |y_n - \Phi(u_n, \theta)|$$

$$Q_{N}(\theta) = \max_{1 \leq n \leq N} \{q(y_{n}, \overline{y}_{n})\} = \max_{1 \leq n \leq N} \{q(y_{n}, \Phi(u_{n}, \theta))\} \quad \text{e. g. : } Q_{N}(\theta) = \max_{1 \leq n \leq N} \{y_{n} - \overline{y}_{n}|\} = \max_{1 \leq n \leq N} \{y_{n} - \Phi(u_{n}, \theta)\}$$

Choice of the best model based on the noise free measurements

Problem formulation

Optimal model: $\overline{y} = \Phi(u, \theta_N^*)$

$$\theta_N^* \to Q_N(\theta_N^*) = \min_{\theta} Q_N(\theta)$$

The model is optimal for:

- given measurement sequence
- proposed model
- performance index

Neuron model simplification

$$y = \phi \left(\sum_{s=1}^{S} \theta_s u^{(s)} + \theta_0 \right) = \phi \left(\theta^T \varphi(u) \right)$$
 Φ – activation function

Multilayer network

Plant parameter estimation problem

Noised measurements of the physical values

Problem formulation

Measurement noise:

 z_n — value of random variable \underline{z} from the space $\mathscr X$

 $f_z(z)$ – probability density function

 θ – observed vector of parameters, value of random variable $\underline{\theta}$, $\theta \in \Theta \subseteq \mathbb{R}^R$

 $f_{\theta}(\theta)$ – probability density function

Measurements: $V_N = \begin{bmatrix} v_1 & v_2 & \cdots & v_N \end{bmatrix}$

 $h(\theta,z)$

 $\Psi_{N}(V_{N})$

Noised measurements of the physical values

General form of estimation algorithm:

$$\theta_N = \Psi_N(V_N)$$

- Solution:
 - Least square method
 - Maximum likelihood method
 - Bayesian method

Plant parameter estimation problem

Deterministic plant, noised measurements of the plant output

where:

$$U_N = \begin{bmatrix} u_1 & u_2 & \cdots & u_N \end{bmatrix}$$

$$W_N = \begin{bmatrix} w_1 & w_2 & \cdots & w_N \end{bmatrix}$$

 $\Psi_{_{\mathit{N}}}$ – estimation algorithm

$$\theta_{\scriptscriptstyle N}$$
 – estimate of θ

Plant parameter estimation problem

Immeasurable random plant parameter

where:

$$U_N = \begin{bmatrix} u_1 & u_2 & \cdots & u_N \end{bmatrix}$$

$$Y_N = \begin{bmatrix} y_1 & y_2 & \cdots & y_N \end{bmatrix}$$

 $\Psi_{_{N}}$ – estimation algorithm

$$\theta_{\scriptscriptstyle N}$$
 – estimate of θ

$$(u_n, y_n), n = 1, 2, ..., N$$

are values of random variables (\underline{u}, y)

Choice of the best model, probabilistic case

Two possible cases

Full a'priori knowledge

- joint probability density function f(u,y) of random variables (\underline{u},y)

or

- conditional probability density function $f_v(y|u)$

and mrginal probability density function

$$f_u(u)$$

Incomplete probabilistic information

joint probability density function of random variables $(\underline{u}, \underline{y})$ exist, but is not known. Measurements:

$$(u_n, y_n), n = 1, 2, ..., N$$

are values of (\underline{u}, y)

are known

Full a'priori knowledge

Regression of the I type

$$\overline{y} = \Phi^*(u) = E[\underline{y}|\underline{u} = u] = \int_{\mathscr{Y}} y f(y|u)dy$$

Full a'priori knowledge

Regression of the II type

$$q(y, \overline{y}) = [y - \overline{y}]^T [y - \overline{y}]$$

$$Q(\theta) = \iint_{\mathcal{U}} [y - \Phi(u, \theta)]^T [y - \Phi(u, \theta)] \times f(u, y) dy du$$

Full a'priori knowledge

$$Q(\theta) = \int_{\mathcal{U}} \int_{\mathcal{U}} (y - \Phi^*(u))^2 f(u, y) dy du + \int_{\mathcal{U}} (\Phi^*(u) - \Phi(u, \theta))^2 f_u(u) du$$

$$\theta^* \to \min_{\theta} Q(\theta) = \min_{\theta} \int_{\mathcal{U}} (\Phi^*(u) - \Phi(u, \theta))^2 f_u(u) du$$

the I type regression

weight function

The II type regression is the best approximation of the I type regression.

Unknown a Priori Knowledge Empirical Estimation of the Performance Index

Empirical Estimation of the Performance Index

Empirical Probability Density Functions

Unknown parameters of the probability density functions

Empirical Probability Density Functions

Non parametric – Parzen estimation

Complex systems description

Example of complex system

Complex systems identification problems

- Identification with restricted measurements posibilities
- Local and global identification
- Multistage identification
- Compleks of operation systems

Identification of complex systems with restricted measurement possibilities

The following examples show the problem.

Cascade structure of two elements

For the above case the system description has the form:

$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} x = \begin{bmatrix} x \\ y_2 \end{bmatrix},$$

$$v = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = y_2.$$

Choice of the best model of complex system

Locally optimal model of complex system

Choice of the best model of complex system

Globally optimal model of complex system

Two stage identification and it's applications

Two stage identification and it's applications

Two stage identification

- Space decomposition
- Time decomposition

Identification of complex of operations

$$T_m = F_m(u_m, a_m), \quad m = 1, 2, ..., M, \quad T = H(T_1, T_2, ..., T_M)$$

 $H\,$ – function determining the total runtime of complex of operation

$$F_1, F_2, \dots, F_M$$
 – known functions

 a_1, a_2, \dots, a_M – unknown parameters

Basic optimization task formulation

Decision variables:
$$x = \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ \vdots \\ x^{(S)} \end{bmatrix}$$

Objective function: y = F(x)

Set of feasible decisions (commonly defined by variables domain and constraints):

$$x \in \mathcal{D}_x$$

Optimization task:
$$x^* \to F(x^*) = \min_{x^* \in \mathcal{D}_x} F(x)$$
, x^* - optimal decision
$$\min F(x) = -\max(-F(x))$$

General classification of optimization tasks

Unconstrained optimization: $\mathcal{Q}_x = \mathcal{R}^S$

Optimization under equality constraints:

$$\mathcal{Q}_x = \left\{ x \in \mathcal{R}^S : \varphi_1(x) = 0, \varphi_2(x) = 0, \dots, \varphi_L(x) = 0, L \le S \right\}$$

Optimization under inequality constraints:

$$\mathcal{Q}_x = \left\{ x \in \mathcal{R}^S : \psi_1(x) \le 0, \psi_2(x) \le 0, \dots, \psi_M(x) \le 0 \right\}$$

Analytical methods

- Unconstrained optimization
- Lagrange multipliers method equality constraints
- Kuhn-Tucker conditions inequality constraints

Unconstrained optimization

Optimization task:
$$x^* \to F(x^*) = \min_{x^* \in \mathcal{D}_x} F(x)$$

Assumption: F(x) is continuous and differentiable.

Necessary condition for x^* to be local minima: $\nabla_x F(x^*) = 0_S$

If F(x) is convex function, then above equation is sufficient condition for x^* to be global minima.

Optimization task: $x^* \to F(x^*) = \min_{x^* \in \mathcal{Q}_x} F(x)$

$$\mathcal{Q}_{x} = \left\{ x \in \mathcal{R}^{S} : \varphi_{1}(x) = 0, \varphi_{2}(x) = 0, \dots, \varphi_{L}(x) = 0, L \leq S \right\}$$

The method of Lagrange multipliers

Lagrange function:

$$L(x,\lambda) = F(x) + \sum_{l=1}^{L} \lambda_l \varphi_l(x) = F(x) + \lambda^T \varphi(x)$$

Necessary conditions of optimality:

$$\left. \nabla_x L(x, \lambda) \right|_{x^*, \lambda^*} = 0_S$$

$$\nabla_{\lambda} L(x,\lambda)|_{x^* \to x^*} = 0_L$$
 If and only if

rank
$$G(x) = \text{rank } [G(x) : -\nabla_x F(x)],$$

 $\lambda = \begin{vmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \end{vmatrix}, \quad \varphi(x) = \begin{vmatrix} \varphi_1(x) \\ \varphi_2(x) \\ \vdots \\ \varphi_n(x) \end{vmatrix}$

Where:
$$G(x) = [\nabla_x \varphi_1(x) : \nabla_x \varphi_2(x) : \cdots : \nabla_x \varphi_L(x)]$$

The generalized method of Lagrange multipliers

Generalized Lagrange function:

$$L(x, \lambda, \lambda_0) = \lambda_0 F(x) + \sum_{l=1}^{L} \lambda_l \varphi_l(x)$$

Necessary conditions of optimality:

$$\left. \nabla_x L(x, \lambda, \lambda_0) \right|_{x^*, \lambda^*, \lambda_0} = 0_S$$

$$\left. \nabla_{\lambda} L(x, \lambda, \lambda_0) \right|_{x^*, \lambda^*, \lambda_0} = 0_L$$

The generalized method of Lagrange multipliers

$$\nabla_x L(x,\lambda,\lambda_0) = \lambda_0 \nabla_x F(x) + \sum_{l=1}^L \lambda_l \nabla_x \varphi_l(x) = 0_S$$

$$1^{\text{O}} \qquad \lambda_0 \neq 0 \qquad \nabla_x F(x) + \sum_{l=1}^L \frac{\lambda_l}{\lambda_0} \nabla_x \varphi_l(x) = 0_S \\ \Rightarrow \nabla_x F(x) + \sum_{l=1}^L \lambda_l' \nabla_x \varphi_l(x) = 0_S$$
 We obtain regular solutions.
$$2^{\text{O}} \qquad \lambda_0 = 0 \qquad \sum_{l=1}^L \lambda_l \nabla_x \varphi_l(x) = 0_S$$
 We obtain irregular solutions.

Second order condition of optimality requires analysis of $H(x, \lambda, \lambda_0) = \nabla_{xx}^2 L(x, \lambda, \lambda_0)$.

Optimization task: $x^* \to F(x^*) = \min_{x^* \in \mathcal{Q}_x} F(x)$

$$\mathcal{Q}_x = \left\{ x \in \mathcal{R}^S : \psi_1(x) \le 0, \psi_2(x) \le 0, \dots, \psi_M(x) \le 0 \right\}$$

Lagrange function:

$$L(x,\mu) = F(x) + \mu^T \psi(x) \quad \Leftrightarrow \quad L(x,\mu) = F(x) + \sum_{m=1}^M \mu_m \psi_m(x) \qquad \qquad \mu = \begin{bmatrix} x & 1 \\ \mu_2 & \vdots \\ \vdots & \vdots \end{bmatrix}$$

$$\mu = egin{bmatrix} \mu_1 & \mu_2 & \vdots & \mu_M \end{bmatrix}$$

Necessary conditions of optimality:

$$\nabla_{x}L(x,\mu)\Big|_{x^{*},\mu^{*}} = 0_{S}$$

$$\mu^{T}\nabla_{\mu}L(x,\mu)\Big|_{x^{*},\mu^{*}} = 0$$

$$\nabla_{\mu}L(x,\mu)\Big|_{x^{*},\mu^{*}} \le 0_{M}$$

$$\mu^{*} \ge 0_{M}$$

If solution is regular

$$\alpha = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_S \end{bmatrix} \quad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_S \end{bmatrix} \qquad \alpha \leq \beta \Rightarrow \forall_{s=1,\dots,S} \alpha_s \leq \beta_s$$

$$\alpha \leq \beta \Rightarrow \forall_{s=1,\dots,S} \alpha_s \leq \beta_s$$
HUMAN CAPITAL HUMAN-BEST INVESTMENT

Optimization under inequality constraints Kuhn – Tucker rolls

Regularity Conditions

- 1. Karlin: constraints $\psi_1(x), \psi_2(x), \dots, \psi_M(x)$ linear
- 2. Slater: constraints $\psi_1(x), \psi_2(x), \dots, \psi_M(x)$ convex functions and feasible set is not empty
- 3. Fiacco Mac Cormica: in the optimal point gradients of all active constraints are linear
- independent, i.e.: $\forall \ m \in I(x^*) \quad \nabla_x \psi_m(x^*)_{x=x^*} \ \text{ are linear independent}$
- 4. Zangwil: $\mathcal{D}(x^*) = \overline{D}(x^*)$
- 5. Kuhna Tucker'a: for each direction $d \in \mathcal{D}(x^*)$ there exists regular curve starting in the point χ^* tangent to that direction

The point
$$x$$
 tangent to that direction $\forall d \in \mathcal{D}(x^*) \quad \exists e(\theta), \quad \theta \in [0, 1]$

$$e(\theta) = x^* \qquad e(\theta) = \begin{bmatrix} e_1(\theta) \\ e_2(\theta) \\ \vdots \\ e_S(\theta) \end{bmatrix}$$

$$de(\theta)_1 \qquad de(\theta)_1 \qquad de(\theta)_2 \qquad de(\theta)_3 \qquad de(\theta)_4 \qquad de(\theta)_4 \qquad de(\theta)_5 \qquad de(\theta)_5$$

- $e(0) = x^*$
- $e(\mathcal{G}) \in D_{r} \quad \forall \ \mathcal{G} \in [0,1]$

Saddle point

Saddle point

$$L(x^*, \mu^*) \le L(x, \mu^*) \quad \forall x \in \mathcal{D}(x) \subseteq \mathcal{R}^S$$
$$L(x^*, \mu) \le L(x^*, \mu^*) \qquad \forall \mu \ge 0_M$$

$$L(x^* = u^*) = \min_{x \in \mathcal{P}(x)} \max_{u \geq 0} L(x_*)$$

Numerical optimization methods

$$x^* \to F(x^*) = \min_{x \in D_x} F(x)$$

Analytical methods has drawbacks, when:

- 1. The goal function F and constraints φ, ψ are nonlinear.
- 2. Functions F, φ and ψ are non-differentiable
- 3. Mathematical formula describing functions F, φ and ψ is not available, it can only be "measured"
- 4. Large dimension of decision variables vector

Numerical optimization methods

Algorithm

$$x_{n+1} = \Psi(x_n), x_0$$

- Choice of the search direction.
- Line search optimization.
- Stopping conditions.

$$x_0, x_1, ..., x_n, ..., x_N \approx x^*$$

 $F(x_0) > F(x_1) > ... > F(x_n) > ... > F(x_N) \approx F(x^*)$

Choice of the search direction

- Basis of search directions non-gradient methods.
- Search directions based on gradient vectors – gradientbased methods.

Line search optimization

 x_0 – initial solution

 x_1 – next solution

d – search direction

 τ – step size

$$\tau^* \to F(x_0 + \tau^* d) = \min_{\tau} F(x_0 + \tau d)$$

$$x_0$$
, d – fixed

$$F(x_0 + \tau d) \triangleq f(\tau)$$

 $f(\tau)$ – a single variable function (of the step size τ)

$$\tau^* \to f(\tau^*) = \min_{\tau} f(\tau)$$

line search optimization ≡ optimization of a single variable function

Reducing the interval of uncertainty

Assumption: $\tau^* \in [a, b]$

Splitting the section into two parts

$$f(\alpha_n) \le f(\beta_n)$$

$$a_{n+1} \coloneqq a_n$$

$$b_{n+1} \coloneqq \beta_n$$

Dichotomous search method

$$\alpha_n = \frac{1}{2}(a_n + b_n) - \delta$$

$$\beta_n = \frac{1}{2}(a_n + b_n) + \delta \qquad N = ?$$

Input data: $a_0, b_0, \varepsilon, \delta$

Step 0: n = 0

Step 1: $\alpha_n = \frac{1}{2}(a_n + b_n) - \delta$

$$\beta_n = \frac{1}{2}(a_n + b_n) + \delta$$

Step 2: If $f(\alpha_n) \le f(\beta_n)$ then

$$a_{n+1} \coloneqq a_n, b_{n+1} \coloneqq \beta_n,$$

otherwise

$$a_{n+1} \coloneqq \alpha_n, b_{n+1} \coloneqq b_n.$$

Step 3: If $|b_{n+1} - a_{n+1}| \ge \varepsilon$ then

$$n \coloneqq n + 1$$
, go to 1,

otherwise

$$\tilde{\tau} = \frac{1}{2}(a_{n+1} + b_{n+1})$$
 (STOP)

The golden section method

$$\gamma^2 + \gamma - 1 = 0$$
 $\gamma = \frac{\sqrt{5} - 1}{2} \approx 0.618$ $N = ?$

Input data:
$$a_0$$
, b_0 , ε , $\gamma = \frac{\sqrt{5}-1}{2}$

Step 0:
$$n = 0$$

$$\alpha_0 = b_0 + \gamma (a_0 - b_0)$$

$$\beta_0 = a_0 + \gamma (b_0 - a_0)$$

Step 1: If
$$|b_n - a_n| < \varepsilon$$
, then

$$\tilde{\tau} = \frac{1}{2}(a_n + b_n)(STOP)$$

otherwise go to 2

Step 2: If
$$f(\alpha_n) \le f(\beta_n)$$
 then

$$a_{n+1} \coloneqq a_n, b_{n+1} \coloneqq \beta_n,$$

$$\beta_{n+1} \coloneqq \alpha_n, \ \alpha_{n+1} \coloneqq \beta_n + \gamma(\alpha_n - b_n)$$

$$n := n + 1$$
, go to 1

otherwise

$$a_{n+1} \coloneqq \alpha_n, b_{n+1} \coloneqq b_n,$$

$$\alpha_{n+1} \coloneqq \beta_n, \ \beta_{n+1} \coloneqq \alpha_n + \gamma(b_n - \alpha_n)$$

$$n \coloneqq n + 1$$
, go to 1

Quadratic-fit line search method

$$a < b < c$$

$$f(a) \ge f(b)$$

$$f(b) \le f(c)$$

 $q(\tau)$ – quadratic-fit function τ^* - minimum of the function $q(\tau)$

$$q(\tau) = \frac{f(a)(\tau - b)(\tau - c)}{(a - b)(a - c)} + \frac{f(b)(\tau - a)(\tau - c)}{(b - a)(b - c)} + \frac{f(c)(\tau - a)(\tau - b)}{(c - a)(b - c)}$$

$$\tau^* = \frac{1}{2} \frac{f(a)(b^2 - c^2) + f(b)(c^2 - a^2) + f(c)(a^2 - b^2)}{f(a)(b - c) + f(b)(c - a) + f(c)(a - b)}$$

Line search using derivatives

$$\tau_{n+1} = \tau_n - \gamma_n f'(t_n) \qquad \gamma_n > 0, \tau_0$$

$$\lim_{n\to\infty} \gamma_n = \gamma \qquad \qquad \sum_{n=0}^{\infty} \gamma_n = \infty$$

e.g.
$$|\tau_{n+1} - \tau_n| < \varepsilon$$
 (STOP)

$$\tau_{1} = \tau_{0} - \gamma_{0} f'(\tau_{0})
\tau_{2} = \tau_{1} - \gamma_{1} f'(\tau_{1}) = \tau_{0} - \gamma_{0} f'(\tau_{0}) - \gamma_{1} f'(\tau_{1})
\tau_{3} = \tau_{1} - \gamma_{1} f'(\tau_{1}) = \tau_{0} - \gamma_{0} f'(\tau_{0}) - \gamma_{1} f'(\tau_{1})
f'(\tau_{0}) = \tau_{0} - \gamma_{0} f'(\tau_{0}) - \gamma_{1} f'(\tau_{1})$$

$$\tau_{n+1} = \tau_n + \gamma_n f'(\tau_n) = \dots = \tau_0 - \gamma_0 f'(\tau_0) - \gamma_1 f'(\tau_1) - \dots - \gamma_n f'(\tau_n)$$

$$|\tau_{n+1} - \tau_0| = |\sum_{k=0}^{\infty} \gamma_k f'(\tau_k)| \le \sum_{k=0}^{\infty} \gamma_k |f'(\tau_k)| \le \max_{0 \le k \le n} |f'(\tau_k)| \sum_{k=0}^{\infty} \gamma_k$$

$$| au_{\infty} - au_0| \leq \sum_{k=0}^{\gamma_k} \gamma_k = \infty$$

Line search using sign of derivatives

$$\tau_{n+1} = \tau_n - \vartheta_n sign[f'(\tau_n)]$$

$$\gamma_n f'(\tau_n) = \gamma_n |f'(\tau_n)| * sign f'(\tau_n) = \vartheta_n sign[f'(\tau_n)], \text{ where } \vartheta_n = \gamma_n |f'(\tau_n)|$$

$$\vartheta_n > 0$$

$$\lim_{n \to \infty} \vartheta_n = 0$$
, because $\lim_{n \to \infty} |f'(\tau_n)| = 0$, $\lim_{n \to \infty} \gamma_n = \gamma$

$$\sum_{n=0}^{\infty} \vartheta_n = \infty \qquad \qquad \lim_{n \to \infty} \vartheta_n = \lim_{n \to \infty} \gamma_n |f'(\tau_n)| = 0$$

Bolzano method

 $sign a_n \neq sign b_n$

$$sign f'(a_n) = sign f'(\frac{1}{2}(a_n + b_n)) \quad f'\left(\frac{1}{2}(a_n + b_n)\right) = 0$$

$$a_{n+1} \coloneqq \frac{1}{2}(a_n + b_n) \qquad \qquad \tilde{\tau} \coloneqq \frac{1}{2}(a_n + b_n)$$

$$b_{n+1} \coloneqq b_n$$

$$f'\left(\frac{1}{2}(a_n + b_n)\right) = 0$$

$$\tilde{\tau} \coloneqq \frac{1}{2}(a_n + b_n)$$

Newton's method

$$\begin{aligned} &\tau_0 \\ &\tau_{n+1} = \tau_n - \frac{f'(\tau_n)}{f''(\tau_n)} \\ &|\tau_{n+1} - \tau_n| < \varepsilon \text{ (STOP)} \end{aligned}$$

$$f(\tau) = f(\tau_0) + (\tau - \tau_0)f'(\tau_0) + \frac{1}{2}(\tau - \tau_0)^2 f''(\tau_0) + 0_3(|\tau - \tau_0|)$$

$$q(\tau)$$

$$q'(\tau) = f'(\tau_0) + (\tau^* - \tau_0)f''(\tau_0) = 0$$

$$\tau^* = \tau_0 - \frac{f'(\tau_0)}{f''(\tau_0)}$$

Method of Hooke and Jevees with discrete steps

 $\alpha > 1$ exploratory step size $\beta \in (0,1)$ acceleration factor $\tau \coloneqq \tau \beta$

Method of Rosenbrock with discrete

 τ – step size

 $\alpha > 1$ – exploratory step size acceleration

 $\beta \in (-1,0)$ – acceleration factor

$$\tau_s \coloneqq \tau_s \alpha$$

$$\tau_{\scriptscriptstyle S}\coloneqq \tau_{\scriptscriptstyle S}\beta$$

Method of Hooke and Jeeves using line searches

Method of Rosenbrock using line searches

Powell's method – conjugate directions

 d_1, d_2, \dots, d_S - conjugated directions, A - symmetric, positively defined matrix

$$d_i^T A d_j = \begin{cases} 0 & i \neq j \\ & \\ 1 & i = j \end{cases}$$

Powell's method – conjugate directions

$$x_1 = x_0 + x^*d$$
 τ^* - optimal step size along the direction d from x_0
 $x_1' = x_0' + \tau^{*'}d$
 $\tau^{*'}$ - optimal step size along the direction d from x_0'

$$d^{T}Ad' = 0$$

 d, d' - conjugated with respect A

Powell's method

Nelder-Mead method

 $x_1 x_2 \dots x_{S+1}$ - s-dimensional simplex

$$x_H \to F(x_H) = \max_{1 \le s \le S+1} F(x_S)$$

$$x_L \to F(x_L) = \min_{1 \le s \le S+1} F(x_S)$$

$$\bar{x} = \frac{1}{s} \sum_{S=1, S \ne H} x_S$$

Initial simplex:

$$x_0, c$$

$$d_i = [$$

$$a = \frac{c}{S\sqrt{2}}(\sqrt{S+1} + \sqrt{2} - 1)$$

$$b = \frac{c}{S\sqrt{2}}(\sqrt{S+1} - 1)$$

$$x_i = x_0 + d_i, x_{S+1} = x_0$$

Nelder-Mead method

Nelder-Mead method

Reflection

$$x^* = \bar{x} + \alpha(\bar{x} - x_H)$$

 α – reflection coefficient

If
$$\alpha > 0$$

$$F(x^*) < F(x_L)$$

Expansion

$$x^{**} = \bar{x} + \gamma(x^* - \bar{x}) \qquad \gamma > 1$$

 γ – expansion coefficient

If
$$F(x^*) > F(x_H)$$

Contraction

$$x^{***} = \bar{x} + \beta(x_H - \bar{x})$$

If
$$F(x^*) > \max_{1 \le S \le S+1} F(x_S)$$

$$x^{***} = \bar{x} + \beta(x^* - \bar{x}) \quad \beta \in (0, 1)$$

 β – contraction coefficient

The gradient descent method

$$x_{n+1} = x_n + \tau_n d_n$$

$$d_n = -\nabla_x F(x_n) ; \tau_n > 0, \lim_{n \to \infty} \tau_n = \tau, \sum_{n=0}^{\infty} \tau_n = \infty$$

$$\|x_{n+1} - x_n\| = \|\tau_n d_n\| < \varepsilon$$

The gradient descent method

$$x_{n+1} = x_n + \tau_n d_n$$
 $d_n = -\nabla_x F(x_n), \ \tau_n$ – optimal step size along the direction d_n

$$||x_{n+1} - x_n|| < \varepsilon$$

Newton's method

$$F(x) = F(x_0) + (x - x_0)^T \nabla_x F(x_0) + \frac{1}{2} (x - x_0)^T H(x_0) (x - x_0) + 0_3 (\|x - x_0\|)$$

$$Q(x)$$

$$\nabla_{x}Q(x) = \nabla_{x}F(x_{0}) + H(x_{0})(x^{*} - x_{0}) = O_{S}$$

$$x^* = x_0 - H^{-1}(x_0) \nabla_{x} F(x_0)$$

$$x_{n+1} = x_n - H^{-1}(x_n) \nabla_{x} F(x_n)$$

Variable metric methods

Step 0:
$$z_1 = x_0$$

$$d_1 = -D_1 \nabla_x F(z_1) \quad D_1 = I$$

Step 1:
$$z_{s+1}=z_s+\tau_s d_s$$
 τ_s – optimal step size along the direction d_s If $\|\tau_s d_s\|<\varepsilon$ (STOP)

otherwise go to 2

Step 2:
$$d_{s+1} = -D_{s+1}\nabla_x F(z_{s+1})$$

$$D_{S+1} = D_S + \frac{p_S p_S^T}{p_S^T q_S} - \frac{D_S q_S q_S^T D_S}{q_S^T D_S q_S},$$

$$p_S = \tau_S d_S$$
, $q_S = \nabla_{\chi} F(z_{S+1}) - \nabla_{\chi} F(z_S)$

$$s \coloneqq s + 1$$
, go to 1

$$D_{S+1} \approx H^{-1}(x_{S+1})$$

Fletcher-Reeves method of conjugate gradients

Step 0:
$$z_1 = x_0$$
, $s = 1$, $d_1 := -\nabla_x F(z_1)$

Step 1:
$$z_{s+1} \coloneqq z_s + \tau_s d_s$$

 $au_{\scriptscriptstyle S} o$ optimal step size along the direction $d_{\scriptscriptstyle S}$

If
$$\|\tau_s d_s\| < \varepsilon$$
 (STOP)

otherwise go to 2

Step 2:
$$d_{S+1}\coloneqq -\nabla_{\!\!\chi} F(z_{S+1}) + \frac{\|\nabla_{\!\!\chi} F(z_{S+1})\|}{\|\nabla_{\!\!\chi} F(z_{S})\|} d_{S}$$
 $s\coloneqq s+1$, go to 1

 d_1 , d_2 , ..., d_S – conjugate directions

Fletcher-Reeves method of conjugate gradients

Step 0:
$$z_1 = x_0$$
, $s = 1$, $d_1 := -\nabla_x F(z_1)$

Step 1:
$$z_{s+1} \coloneqq z_s + \tau_s d_s$$

 $au_{\scriptscriptstyle S} o$ optimal step size along the direction $d_{\scriptscriptstyle S}$

If
$$\|\tau_s d_s\| < \varepsilon$$
 (STOP)

otherwise go to 2

Step 2:
$$d_{S+1}\coloneqq -\nabla_{\!\!\chi} F(z_{S+1}) + \frac{\|\nabla_{\!\!\chi} F(z_{S+1})\|}{\|\nabla_{\!\!\chi} F(z_{S})\|} d_{S}$$
 $s\coloneqq s+1$, go to 1

 d_1 , d_2 , ..., d_S – conjugate directions

Numerical constrained optimization methods

$$x^* \to F(x^*) = \min_{x \in \mathcal{D}_x} F(x)$$

- 1. Elimination of constraints
- 2. Penalty function method
 - exterior penalty
 - barrier function
- 3. Methods of feasible directions
- 4. Other approaches

Elimination of constraints

Master programmes in English at Wrocław University of Technology

$$r_k > 0$$

$$\lim_{k\to\infty} r_k = \infty$$

Master programmes in English at Wrocław University of Technology

$$r_k > 0 \qquad \lim_{k \to \infty} r_k = 0$$

Feasible directions method

$$d = \frac{\nabla_x \psi_m(x)}{\|\nabla_x \psi_m(x)\|} - \frac{\nabla_x F(x)}{\|\nabla_x F(x)\|}$$
$$x : \psi(x) - \delta \le 0$$

Gradient projection method of Rosen

Random search - Down Hill method

Data: $F(x), x_0, D_x, N$

Step 0: $n=0, x^* = x_n$

Step 1: Generate point x_{n+1} in the set D_x with unity probability density

Step 2: IF $F(x_{n+1}) < F(x^*)$ THEN $x^* = x_{n+1}$

Step 3: IF n < N THEN n = n + 1 GO TO STEP 1

Step 4: $x^* = x_N$

Random search

$$f(x) = \frac{F(x)}{\int\limits_{D_x} F(x) dx}$$

Master programmes in English at Wrocław University of Technology

Nature-Inspired Algorithms Bibliogrphy

- Clever Algorithms: Nature-Inspired Programming Recipes, Jason Brownlee
- Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning, Shumeet Baluja, School of Computer Science Carnegie Mellon University Pittsburgh, 1994
- The Bees Algorithm A Novel Tool for Complex Optimisation Problems, D.T. Pham,
 A. Ghanbarzadeh, E. Koç et. al, Cardiff University, 2006
- Zastosowanie Algorytmów Rojowych do Optymalizacji Parametrów w Modelach Układów Regulacji, Mirosław Tomera, Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej Nr 46, 2015
- Automatic Tuning of a Retina Model for a Cortical Visual Neuroprosthesis Using a Multi-Objective Optimization Genetic Algorithm, Antonio Martínez-Álvarez, Rubén Crespo-Cano, Ariadna Díaz-Tahoces et. al., International Journal of Neural Systems 26/7, 2016

General problem formulation

$$x^* \to F(x^*) = \min_{x \in \mathcal{D}_x} F(x)$$

$$\mathcal{D}_x = \{x \in R^s, \varphi_l(x) = 0, l = 1, 2, ..., L, \psi_m(x) \le 0, m = 1, 2, ..., M\}$$

$$F(x) = c^T x = \sum_{s=1}^{S} c_s x^{(s)}$$

$$\varphi_l(x) = a_l^T - b_l = \sum_{s=1}^S a_{ls} x^{(s)} - b_l = 0 \quad l = 1, 2, ..., L$$

$$\psi_m(x) = a_m^T x - b_m \le 0 = \sum_{s=1}^S a_{ms} x^{(s)} - b_m \le 0 \quad m = 1, 2, ..., M$$

$$x^{(s)} \ge 0$$
 $s = 1, 2, ..., S$

Geometric view

Solution is located on a vertex

Geometric view

2. Solution is located on an edge

Geometric view

3. Unbounded solution

Standard form

$$F(x) = c^T x$$

A:
$$\mathcal{D}_X = \{x \in R^s, Ax - b = 0_L, x \ge 0_S\}$$

or

B:
$$\mathcal{D}_x = \{x \in R^s, Ax - b \le 0_L, x \ge 0_S\}$$

$$c = \begin{bmatrix} c_1 \\ \vdots \\ c_S \end{bmatrix}, \qquad b = \begin{bmatrix} b_1 \\ \vdots \\ b_L \end{bmatrix}, \qquad x = \begin{bmatrix} \chi^{(1)} \\ \vdots \\ \chi^{(S)} \end{bmatrix}, \qquad A_{SxL} = \begin{bmatrix} a_{11} & \cdots & a_{1S} \\ \vdots & \ddots & \vdots \\ a_{L1} & \cdots & a_{LS} \end{bmatrix}$$

The simplex method

- Generation of initial basis
- 2. Checking $c c_B B^{-1} A \ge 0_S$. If it holds, then x_B is basic feasible solution $x = [x_B \ 0]$
- 3. Such a k that $c_k z_k = \min_{1 \le s \le S} (c_s z_s)$ is introduced to the basis
- 4. Checking, whether $h_k \leq 0$, if it holds true solution is unbounded
- 5. Removing such / from the basis, for which:

$$\frac{h_{l0}}{h_{lk}} = \min_{1 \le s \le S} \{ \frac{h_{s0}}{h_{sk}}, h_{sk} > 0 \}$$

6. $I_B \coloneqq I_B \setminus \{l\} \cup \{k\}$ $I_B = \{j \in \{1, 2, ..., S\} \quad x^{(j)} \text{ belongs to the basis } \}$

Master programmes in English at Wrocław University of Technology

				c_1	•••	c_k	•••	c_S		
	Zmienne bazowe	c_B	h_0	h_1	•••	h_k		h_S	$rac{h_{s0}}{h_{sk}}$	$h_{sk} \ge 0$
	x_{j1}	c_{j1}	h_{10}	h_{11}	•••	h_{1k}	•••	h_{1s}		
	:	:	:	:	÷	:	:	:		
\leftarrow	x_{jl}	c_{jl}	h_{l0}	h_{l1}	•••	(h_{lk})	•••	h_{ls}		
	:	:	:	:	÷	:	:	:		
	x_{jL}	c_{jL}	h_{L0}	h_{L1}	•••	h_{Lk}	•••	h_{Ls}		
				$c_1 - z_1$	•••	$c_k - z_k$	•••	$c_S - z_S$		

$$z_k = \sum_{S \in I_B} c_S h_{Sk}$$

$$h'_{ls} \coloneqq \frac{h_{ls}}{h_{lk}}; \quad h'_{is} = h_{is} - \frac{h_{ik}h_{ls}}{h_{lk}}$$

$$s = 1, 2, ..., S \qquad i = 0, 1, ..., S$$

$$s \in I_B \setminus \{l\}$$

Quadratic programming

$$x^* \to F(x^*) = \min_{x \in \mathcal{D}_x} F(x)$$

$$F(x) = x^T D x + c^T x$$

$$D_x = \{x \in R^s, Ax = b, x \ge 0\}$$

Linear Fractional Programming

$$x^* \to F(x^*) = \min_{x \in \mathcal{D}_x} F(x)$$

$$F(x) = \frac{a^{T}x + b}{c^{T}x + d} \qquad a \in \mathcal{R}^{S}, b \in \mathcal{R}, c \in \mathcal{R}^{S}, d \in \mathcal{R}$$
$$c^{T}x + d \neq 0$$

$$\mathcal{D}_{x} = \{x \in R^{s}, Ax - e \leq 0_{L}, x \geq 0_{S}\}$$

Charnes - Cooper Method

Discrete programming – branch and bound method

$$x^* \to F(x^*) = \min_{x \in \mathcal{D}_{xc}} F(x)$$

 $\mathcal{D}_{xc} = \mathcal{D}_x \cap \{x^{(s)} \subset C \mid s = 1, 2, ..., S\}$ integer decision variables

Special case

 $\mathcal{D}_{xc} = \{x_1, x_2, \dots, x_k\}$ – finite set, k – large number

 $\mathcal{D}_{xc} = \{0, 1\}$ - binary programming

Master programmes in English at Wrocław University of Technology

Step 0:
$$\mathcal{D}_0 = \{\mathcal{D}_{xc} = \mathcal{D}_{01}\}, n = 0, J_0 = 1$$

Step 1: Determine a set
$$\mathcal{D}^* \in \mathcal{D}_n$$

$$\mathcal{F}(\mathcal{D}^*) = \min_{\mathcal{D} \in \mathcal{D}_n} \mathcal{F}(\mathcal{D})$$

Step 2: Checking whether \mathcal{D}^* is a set ? $(\{x^*\} = \mathcal{D}^*)$ or $x^* \sim \mathcal{F}(\mathcal{D}^*)$ i.e. $\mathcal{F}(\mathcal{D}^*) = F(x^*)$ $x^* \in \mathcal{D}^*$ (?) then x^* optimal solution STOP

Step 3: $\mathcal{D}^* = \mathcal{D}_{nk}$ is split up into M disjoint sets

$$\mathcal{D}_{1nk}\mathcal{D}_{2nk}\dots\mathcal{D}_{Mnk} \quad \mathcal{D}_{nk} = \bigcup_{m=1}^{M} \mathcal{D}_{mnk}$$

Step 4:
$$\mathcal{D}^* = \mathcal{D}_{nk}$$

$$\mathcal{D}_{n+1} = \mathcal{D}_n \cup \{\mathcal{D}_{1nk}, \mathcal{D}_{2nk}, \dots, \mathcal{D}_{Mnk}\} \backslash \mathcal{D}_{nk}$$

$$\mathcal{D}_{n+1,j} = \mathcal{D}_{nj}$$
 $j = 1, 2, ..., k-1$

$$\mathcal{D}_{n+1,j} = \mathcal{D}_{mnk} \quad j = k+m, m = 1, 2, \dots, M$$

$$\mathcal{D}_{n+1,j} = \mathcal{D}_{ni}$$
 $j = k + M + i, i = k + 1, ..., J_n, J_{n+1} = J_n + M - 1$

Master programmes in English at Wrocław University of Technology

Decision making under uncertainty

$$F(x) = E_{\omega}[F(x,\underline{\omega})]$$

$$\mathcal{Q}_{x} = E[\mathcal{Q}_{x}(\underline{\omega})] =$$

$$F(x) = E[F(x, \underline{\omega})]$$

$$\mathcal{D}_{x} = E[\mathcal{D}_{x}(\underline{\omega})] = \begin{cases} x \in \mathcal{R}^{S}; E[\varphi_{l}(x, \underline{\omega})] = 0, l = 1, ..., L, E[\psi_{m}(x, \underline{\omega})] \leq 0, m = 1, ..., M \end{cases}$$

$$x^* \to F(x^*) = \min_{x \in D_x} F(x)$$

A game against nature

 \mathcal{Q}_i - the minimum profit for *i*—th row

 A_i - the maximum profit for *i*–th row

$$H_i(\gamma) = a_i \gamma + A_i(1-\gamma) \quad \gamma \in [0,1]$$

The Hurwitz rule.

Analyzing the subsequent rows of the matrix we find the minimum and the maximum revenue, i.e. values a_i , A_i and value of the function $H_i(\gamma)$ for a given γ . We make such a decision, for which the value of the function $H_i(\gamma)$ is the greatest. In case of ambiguity, we recommend all the decisions for which the above condition is satisfied.

Type of	We	ather conditi	ons	а	A	$H(\gamma)$	
corn	drought	normal	rain	min	max	$\gamma = 0.5$	
1	8	10	12	8	12	10	
2	10	11	7	7	11	9	
3	9	13	8	8	13	10.5	← max
4	11	10	6	6	11	8.5	
5	10	10	γ 9	9	10	9.5	

Two-person zero-sum game

Two-player zero-sum game Payoff matrix of player A:

A	B_1	B_2		B_m		B_{M}
A_1	a_{11}	a_{12}		a_{1m}		a_{1M}
A_2	a_{21}	a_{22}		a_{2m}		a_{2M}
			•••		•••	
A_n	a_{n1}	a_{n2}	•••	a_{nm}	•••	a_{nM}
			•••		•••	
A_N	a_{N1}	a_{N2}		a_{Nm}		a_{NM}

Payoff matrix of player B:

A	B_1	B_2		B_m	•••	B_M
A_1	$-a_{11}$	$-a_{12}$		$-a_{1m}$		$-a_{1M}$
A_2	$-a_{21}$	$-a_{22}$		$-a_{2m}$		$-a_{2M}$
A_n	$-a_{n1}$	$-a_{n2}$		$-a_{nm}$		$-a_{nM}$
	•••				•••	•••
A_N	$-a_{N1}$	$-a_{N2}$	•••	$-a_{Nm}$		$-a_{NM}$

Player A aims to maximize revenue

Player B aims to minimize losses

Usually the payoff matrix of player A is presented

Decision making using game theory

- Typical approaches to game solving
 - determination of saddle point
 - removal of dominated strategies
 - determination of mixed strategies for:
 - N=2 and M=2
 - N>2 and M>2

Separable goal function and separable constrains with coordinate variable

Multistage optimization

Step 1.
$$x_S^* = G_S(x_1, ..., x_{S-1}) \rightarrow F_S(x_1, x_2, ..., x_S^*) = \min_{x_S \in \mathcal{D}_{xS}} F_S(x_1, x_2, ..., x_S)$$

The value of the goal function in the optimal solution:

$$F_{S-1}(x_1, x_2, \dots, x_{S-1}) \stackrel{\triangle}{=} F_S(x_1, x_2, \dots, x_S^*) = F_S(x_1, x_2, \dots, G_S(x_1, \dots, x_{S-1}))$$

Constraints in the optimal solution:

$$\mathcal{D}_{xS-1}(x_{1},...,x_{S-1})^{\Delta} = \mathcal{D}_{xS}(x_{1},...,x_{S-1},x_{S}^{*} = G_{S}(x_{1},...,x_{S-1})) =$$

$$\begin{cases} [x_{1} \ x_{2} \cdots x_{S-1}]^{T} \in \mathcal{R}^{S-1} : \\ \varphi_{lS}(x_{1},x_{2},\cdots,G_{S}(x_{1},...,x_{S-1})) = \varphi_{lS-1}(x_{1},x_{2},\cdots,x_{S-1}) = 0, l = 1,2,...,L, \\ \psi_{mS}(x_{1},x_{2},\cdots,G_{S}(x_{1},...,x_{S-1})) = \psi_{mS-1}(x_{1},x_{2},\cdots,x_{S-1}) \leq 0, m = 1,2,...,M \end{cases}$$

Multistage optimization

Step 2.
$$x_{S-1}^* = G_{S-1}(x_1, ..., x_{S-2}) \rightarrow F_{S-1}(x_1, x_2, ..., x_{S-1}^*) = \min_{x_{S-1} \in \mathcal{D}_{x_{S-1}}} F_{S-1}(x_1, x_2, ..., x_{S-1})$$

The value of the goal function in the optimal solution:

$$F_{S-2}(x_1, x_2, \dots, x_{S-2}) \stackrel{\triangle}{=} F_{S-1}(x_1, x_2, \dots, x_{S-1}^*) = F_{S-1}(x_1, x_2, \dots, G_{S-1}(x_1, \dots, x_{S-2}))$$

Constraints in the optimal solution:

$$\mathcal{D}_{xS-2}(x_{1},...,x_{S-2}) \stackrel{\triangle}{=} \mathcal{D}_{xS-1}(x_{1},...,x_{S-2},x_{S-1}^{*} = G_{S-1}(x_{1},...,x_{S-2})) =$$

$$\begin{cases} [x_{1} \ x_{2} \cdots x_{S-2}]^{T} \in \mathcal{R}^{S-2} : \\ \varphi_{lS-1}(x_{1},x_{2},\cdots,G_{S-1}(x_{1},...,x_{S-2})) = \varphi_{lS-2}(x_{1},x_{2},\cdots,x_{S-2}) = 0, l = 1,2,...,L, \\ \psi_{mS-1}(x_{1},x_{2},\cdots,G_{S-1}(x_{1},...,x_{S-2})) = \psi_{mS-2}(x_{1},x_{2},\cdots,x_{S-2}) \leq 0, m = 1,2,...,M \end{cases}$$

Multistage optimization

Step S-1.
$$x_1^* \to F_1(x_1^*) = \min_{x_1 \in \mathcal{D}_{r_1}} F_1(x_1)$$

We may now return to expressions "G" determined in the previous steps

$$x_1^*$$

$$x_2^* = G_2(x_1^*)$$

$$x_{S-1}^* = G_{S-1}(x_1^*, x_2^*, \dots, x_{S-1}^*)$$

$$x_{S}^{*} = G_{S}(x_{1}^{*}, x^{*}, \dots, x_{S-1}^{*})$$

$$Q(x_0, x_1, \dots, x_{N-1}, y_1, y_2, \dots, y_N) = \sum_{n=0}^{N-1} A_{n+1}(x_n, y_{n+1}) \stackrel{\triangle}{=} F(y_0, x_0, x_1, \dots, x_{N-1})$$

Dynamic programming

Step 2.
$$x_{N-2}^* \to \min_{x_{N-2}} \{ A_{N-1}(x_{N-2}, y_{N-1}) + V_{N-1}(y_{N-1}) \}$$

We know, that $y_{N-1} = P(y_{N-2}, x_{N-2})$

$$x_{N-2}^* = G_{N-2}(y_{N-2}) \rightarrow \min_{x_{N-2}} \{A_{N-1}(x_{N-2}, P(y_{N-2}, x_{N-2})) + V_{N-1}(P(y_{N-2}, x_{N-2}))\}$$

$$\begin{split} &V_{N-2}(y_{N-2}) \stackrel{\Delta}{=} \min_{x_{N-2}} \left\{ A_{N-1}(x_{N-2}, P(y_{N-2}, x_{N-2})) + V_{N-1}(P(y_{N-2}, x_{N-2})) \right\} = \\ &= \left\{ A_{N-1}(x_{N-2}^*, P(y_{N-2}, x_{N-2}^*)) + V_{N-1}(P(y_{N-2}, x_{N-2}^*)) \right\} = \\ &= A_{N-1}(G_{N-2}(y_{N-2}), P(y_{N-2}, G_{N-2}(y_{N-2}))) + V_{N-1}(P(y_{N-2}, G_{N-2}(y_{N-2}))) \end{split}$$

Dynamic programming

Step N.

Step N.
$$x_0^* \to \min_{x_0} \{A_1(x_0, y_1) + V_1(y_1)\}$$
We know, that $y_1 = P(y_0, x_0)$

$$x_0^* = G_0(y_0) \to \min_{x_0} \{A_1(x_0, P(y_0, x_0)) + V_1(P(y_0, x_0))\}$$

 y_0 is known and from now on successive decisions may be determined

$$x_{0}^{*}, x_{1}^{*}, \dots, x_{N-1}^{*}, \qquad x_{0}^{*} = G_{0}(y_{0}) \to y_{1} = P(y_{0}, x_{0}^{*})$$

$$x_{1}^{*} = G_{1}(y_{1}) \to y_{2} = P(y_{2}, x_{2}^{*})$$

$$\vdots$$

$$x_{N-2}^{*} = G_{N-2}(y_{N-2}) \to y_{N-1} = P(y_{N-2}, x_{N-2}^{*})$$

$$x_{N-1}^{*} = G_{N-1}(y_{N-1}) \to y_{N} = P(y_{N-1}, x_{N-1}^{*})$$

x – decision variables vector

$$F_1(x), F_2(x), \dots, F_K(x)$$
 – performance indices

Synthetic performance index

$$F(x) = H(F_1(x), F_2(x), ..., F_K(x))$$

e. g.:
$$F(x) = \sum_{k=1}^{K} \alpha_k F_k(x)$$

where: $\sum_{k=1}^{K} \alpha_k = 1$, $\alpha_k > 0$, k = 1, 2, ..., K

$$F(x) = \prod_{k=1}^{K} F_k(x)$$

$$x^* \to F(x^*) = \min_{x \in \mathcal{D}_x} F(x)$$

H(.) – monotonic for all variables

A selected performance index is optimized, Upper limits for values of another performance indices are specified.

Let $F_1(x)$ be a selected performance index

$$F_{k}(x) \le \beta_{k}, \quad k = 2, 3, ..., K$$

Requirements for performance indices are met

$$\overline{\mathcal{D}_x} = \mathcal{D}_x \cap \left\{ x \in \mathcal{R}^S : F_k(x) \le \beta_k, \ k = 2, \dots, K \right\}$$
$$x^* \to F_1(x^*) = \min_{x \in \overline{\mathcal{D}_x}} F_1(x)$$

Ranked/prioritized performance indices

$$F_1(x) \succ F_2(x) \succ \dots \succ F_K(x) \quad x \in \mathcal{D}_x$$

Step 1.
$$\mathscr{Q}_{x1} = \mathscr{Q}_x$$

$$x_1^* \to F_1(x_1^*) = \min_{x \in \mathcal{D}_{-1}} F_1(x)$$

Step 2.
$$\mathscr{D}_{x2} = \mathscr{D}_{x1} \cap \left\{ x \in \mathscr{R}^S : F_1(x) \leq F_1(x_1^*) + \gamma_1 \right\}$$

$$x_2^* \to F_2(x_2^*) = \min_{x \in \mathcal{D}_{x2}} F_2(x)$$

Step K.
$$\mathscr{Q}_{xK} = \mathscr{Q}_{xK-1} \cap \left\{ x \in \mathscr{R}^S : F_{K-1}(x) \leq F_1(x_{K-1}^*) + \gamma_{K-1} \right\}$$

$$x_K^* = x_K^* \to F_K(x_K^*) = \min_{x \in \mathscr{Q}_{xK}} F_K(x)$$

Non-dominated solutions

$$x_1, x_2 \in D_K \Leftrightarrow \forall j \in \{1, 2, ..., K\} \exists i \in \{1, 2, ..., K\}$$

 $F_j(x_1) > F_j(x_2) \Rightarrow F_i(x_1) < F_i(x_2)$

Exam

- Term 0: 23.06.2025. (Monday)
 room D 3.1, building C-16, time: 9¹⁵-11⁰⁰
- Term 1: 7.07. 2025. (Monday)
 room D 3.1, building C-16, time: 9¹⁵-11⁰⁰
- Term 2: 14.07. 2025. (Monday)
 room D 3.1, building C-16, time: 9¹⁵-11⁰⁰

Term "zero"- necessary conditions

- Positive grades from practice (classes) and laboratory
 i.e. ≥3.0 not later then "zero" term
- Final grade proposition mean value integer number i.e.:
- Final grade = $\frac{[practice\ (classes) + laboratory]}{2} \ge 3.5$
- Must be present during "zero" term (otherwise reject bonus)

- About marks from this semester I will be informed by my assistants.
- About marks from previous years you must inform me by mail sending positive mark form JSOS (USOS) system with name of teacher, name of student and index number.

Thank you for attention

