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Model in the systems research

Hypothesis

Methods, algorithms:

- Projects

- Management

- Control

- Diagnosis

Review

Effect:

- New knowledge,

- New plant,

- Management rolls,

- New controllers,

-Measurement and 

diagnostic devices.

Identification 

plant

Experiment Data

Investigator

Model Comparison

Adaptation

Goal:

- investigation,

- project,

- management,

- control,

- diagnosis,



Identification Task

Identification
plant

Identifier

MODEL

Input Output
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Optimal model for:
• Given measurements sequences
• Klass of models
• Given performance index
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Full probabilistic knowledge
▪ First type regrsesion

▪ Second type regression

Unknown probabilostic knowledge
• Performance index estimatin

• Parameter estimation of the probability

distribution

• Probabilit ditribution estimatoin
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Methods:
▪ Least square

▪ Maximum 

likelihood

▪ Bayes’a
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Choice of the best model



Complex systems description

Complex system of chemical nature

benzene

solution

aspirin

acetic acid, benzene, 

pollutants

mother 

liquid

raw acetylsalicylic 

acid - 2nd batchdissolution, 

2nd stage of 

crystallisation 

and filtration

1st stage of 

crystallisation 

and filtration

drying

raw acetylsalicylic 

acid – 1st batch

benzene



New problems

➢Complex systems description

➢ Identification with restricted measurements 

possibilities

➢Local and global identification problem

➢Multistage identification



Complex systems description
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Complex systems description

Complex input output system with M elementary subsystems MOOO ...,,, 21 . 

)( mmm uFy =                                                       

 

Characteristic of the m-th subsystem, input mu  and output my , Fm is a known function.  
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where: Sm and Lm are dimensions of the input and output spaces,  



Complex systems description
Let u, y, denote vectors of all inputs and outputs in the complex plant: 
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where vector of all complex system inputs:  
=

==
M

m

m
S

M SSu
1

21 ,RUUUU  , 

vector of all complex system outputs:       
=

==
M

m

m
L

M LLy
1

21 ,RYYYY  ,               

and x is S
~

 dimensional external input vector 
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Complex systems description
The structure of the system is given by the relation: 

 

                                       BxAyu += ,                                    

where: A is LS   and B is SS
~

  zero – one matrix.  

The matrix A defines the connections between system elements, i.e.: 
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Complex systems description

External complex system outputs:    
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Complex systems description
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Complex systems description
BxAyu +=  
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Complex systems description

Let us denote it by: )(
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                               )( BxAyFy += .                    

By solving this with respect to y we obtain: ),;( BAxFy 1−=                   

 

                           )(),;( xFBAxFCv == −1
.            



Identification of complex systems with 
restricted measurement possibilities

Let us consider complex system with M elements MOOO ...,,, 21 . The structure of the complex 

system is given by matrices A and B. Static characteristics are known with accuracy to parameters:  

),( mmmm uFy =  

mu  and my  are input and output of m – th elements,  Fm is a known function m  is Rm – dimensional 

vector of unknown parameters: 
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Only external inputs x and outputs v shown by matrix C are measured.  

Now a new question appears: Is it possible to uniquely determine plant characteristic parameters based 

on restricted output measurements?  



Complex systems description
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Identification of complex systems with 
restricted measurement possibilities

The following examples show the problem.  

 
Cascade structure of two elements  

 

For the above case the system description has the form: 
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Identification of complex systems with 
restricted measurement possibilities

Example 1 Let static characteristics of the first and second element are: 
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is a vector of unknown parameters of complex system characteristic.  
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Identification of complex systems with 
restricted measurement possibilities

Example 2 Now let us assume, that both elements are linear ones, 

                                 111 uy =     222 uy = .                              

The description of the system as a new element has the form: 

                                           xv 21= ,                                        

 21  =T
 is a vector of unknown parameters.  

For external inputs 21 xx   outputs v1 and v2 were measured ( 2=N ).  
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Deterministic separability
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where   is a vector of all parameters of particular elements i.e.: 
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The characteristic of the system as a whole with external inputs x outputs v is: 
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Deterministic separability
Example 3. Description of the m – th element has the form:  

                       mmm uy = , Mm ,,, 21= , where: m  is mm SL   matrices of parameters i.e.: 
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Deterministic separability
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Taking into account system structure and measurement possibilities the description of the 

whole system has the form: 
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Deterministic separability
Definition 2 The complex system with a given structure and characteristics of each  

element known with accuracy to parameters is called separable, if the element defined  

by measurement possibilities is identifiable.  

Using Definition of the identifiably we can conclude, that complex system is separable  

if there exists such a sequence  

 NN xxxX 21= ,                                            

which together with corresponding results of output measurements  

 NN vvvV 21= ,                                              

uniquely determines plant characteristic parameters. In the other words, the complex  

system is separable if there exists such an identification sequence XN , which together  

with output measurements VN gives system of equations  

NnxFv nn ,,,),,( 21==  ,                                 

for which there exists the unique solution with respect to  .  



Deterministic separability
Let us notice that parameters   in the characteristic, for the newly defined element,  

are transformed. The characteristic can be rewritten in the form: 
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Deterministic separability

The form of functions F
~

 and   depends on the description of particular elements,  

system structure and measurement possibilities. Coming back to the examples,  

the characteristics for Example 1 has the form:  
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and characteristic for Example 2:  
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Deterministic separability
Theorem 1 The complex system is separable if the element is identifiable and function   is an one 

to one mapping.  

Proof:                                         NnxFv nn ,,,),
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which have the unique solution with respect to 
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. The system of equations may be rewritten 
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Probabilistic separability
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Probabilistic separability
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Choice of the best model of 
complex system

Let us consider input - output complex system with M elements MOOO ...,,, 21 . The structure 

 of the complex system, are given by matrices A and B in complex system description. Static 

characteristic for elements is unknown. For m-th element with input mu  and output my  the following  

model is proposed: 

),( mmmm uy = ,                                                       

my  is output of the model, m  is a known, proposed by us, function and m  is vector of unknown  

parameters of the m-th element model. Model output and vector of model parameters are elements 

 of the respective spaces, i.e.: 
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Choice of the best model of 
complex system 

Let:              
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where vector of all the system inputs:   
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21 ,RUUUU  ,  and vector of all the 

plant outputs and all model outputs: 
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21 ,, RYYYY  . Only some outputs 

will be taken into account. Those outputs will be called the global outputs v,and they are shown by LL 
~

 

dimensional matrices C where L
~

 is a number of selected outputs from the all outputs of complex system, i.e.: 

Cyv = ,                                                           

where    LyCvyvv
~

: RY,V == .                                



Choice of the best model of 
complex system 
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where:     LyCvyvv
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Choice of the best model of 
complex system 

Output of the model may be expressed as:  

),( BxyAy += .                                          

Solution of above equation with respect to y  gives: 

),;,(1 BAxy −= .                                          

and finally by substituting this solution into the system description we obtain: 

),(),;,(1  xBAxCv
df

== −
.                       

The relation above is a model of the complex system with external input x and global 

output v .  



Choice of the best model of 
complex system

• Locally optimal model of complex system 
( )1

1y

( )111 ,u

( )1

1u

1O 3O

2O

( )1

1y

( )2

1y

( )1

3u

( )1

2u
( )2

2u

( )2

3u

( )1

3y

( )1

2y

( )2

2y

( )11 NQ ( )33 NQ

( )1

3y
( )333 ,u

( )22 NQ

( )1
2y

( )222 ,u
( )2

2y



Choice of the best model of 
complex system

• Locally optimal model of complex system 

Now, it will be assumed that each element of complex system is observed independently. For m-th elements for a 

given input sequence the output is measured. The results of the experiment are collected in the following 

matrices:  

   
mmmm mNmmmNmNmmmN yyyYuuuU  2121 == , , 

 

where Nm is a number of measurement points for m-th element, Mm ,,, 21= . 

For each m-th element we propose a model. We also propose the performance index: 

( ) ( )
mmN

mmm U
mmNmNmmN YYQ  −= , 

where:   ( ) ( ) ( ) ( ) mmNmmmmmmm

df
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uuuY  ,,, 21 =  .            

 

 



Choice of the best model of 
complex system

• Locally optimal model of complex system 

The example of performance indexes ( )mmNm
Q  : 
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Choice of the best model of 
complex system

• Locally optimal model of complex system 

The optimal value of vector model parameters for m-th element is obtained by minimization of the  

performance index ( )mmNm
Q   with respect to m from the space m   

( ) ( )mmNmNmNmN m
mm

mmm
QQ 

 
=→ min**

,                

where 
*

mmN  is the optimal value of m-th model parameters and function m  with vector 
*

mmN , i.e.: 

),( *

mmNmmm uy = ,                           

is called locally optimal model of m-th element. The local identification task is repeated for each  

element separately, i.e.: Mm ,,, 21= .  



Choice of the best model of 
complex system

• Locally optimal model of complex system 

Let us denote vector of all the locally optimal parameters by:   





















=

*

*

*

*

MMN

N

N

df

N









2

1

2

1

,                       

where: 
=

=
M

m

mNN
1

. The model of the complex system with locally optimal parameters, i.e.: 
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is called locally optimal model of complex system.  



Choice of the best model of 
complex system

• Globally optimal model of complex system 
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Choice of the best model of 
complex system

• Globally optimal model of complex system 

Performance index:                           ( ) ( )
NXNNN VVQ  −=  

shows the difference between the result of the experiment VN and the respective sequence of model 

outputs calculated for input sequence XN , i.e.: ( ) ( ) ( ) ( )  ,,, 21 N

df

N xxxV =  .     
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NNNN QQ
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=→ min
~~

,                          

where: N
~

 is the optimal vector of model parameters and 

            )
~

,( Nuv =                                                   

is called a globally optimal model of complex system. 



Multi-criteria approach
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Multi-criteria approach

• Synthetic performance index
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Multi-criteria approach

• Select preferred performance index, 
the other – sufficient quality

 

 

 

 

 

 
 

)(1 xF – selected performance index
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Choice of the best model of 
complex system

• Globally optimal model with local quality guaranteed 

Synthetic performance index which takes into account both local and global model qualities:  


=

+=
M

m

mmNmNN QQQ
1

0 )()()(  ,                                     

where: M ,,, 10  is a sequence of weight coefficients. They show weigh of participation  

of global and local performance indexes respectively, in the synthetic performance  

index. Now the optimal model parameters for synthetic performance index:  

 

        )(min)( 
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NNNN QQ
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where N  is an optimal vector for global model for synthetic performance index. 

 



Choice of the best model of 
complex system

• Globally optimal model with local quality guaranteed 
In the other approach we assume that local models must be sufficiently good:  

MmQ mmmN ,,,,)( 21=  ,                                   

where quality sufficient number m  is grater then locally optimal performance index, i.e.: 

.,,,),( * MmQ mmNm 21=                                    

Now, the optimal model parameters will be obtained by minimization global performance  

index with additional constrains, i.e.:  
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R
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and 
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N  is a globally optimal vector parameters sufficiently good for local models. 



Complex system with cascade 
structure
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Complex system with cascade 
structure

The global model has the form: 
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Complex system with cascade 
structure

Notice that the model may be given in the recursive fom: 

 

Mmvv m
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where  xv =)(0 . 

 

The global identification performance index is: 
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Identification algorithm based on 
dynamic programming

Step 1. Determine Ma~ such that 
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where: 
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N vvvV 21=  -  sequence of measurements of  M–th global output, 
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NV  - sequence of outputs of (M-1)-th element in cascade structure. 
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Consequently solution may be rewritten:  
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Identification algorithm based on 
dynamic programming

Step 2. Determine 1
~

−Ma  such that 
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Identification algorithm based on 
dynamic programming

Step (M-1). Determine 2a~  such that 
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Identification algorithm based on 
dynamic programming

Step M. Determine 1
~a such that  
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Identification algorithm based on 
dynamic programming

Now we can came back and determine: 
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Two stage identification and it’s 
applications
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Two stage identification and it’s 
applications
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• Space decomposition
• Time decomposition



Two stage identification and it’s 
applications

• Distillation column with pulsation
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Two stage identification and it’s 
applications

• Distillation column with pulsation
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• Distillation column with pulsation

Measurements:  ,
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n2 

u21 = 5,39  

(1) 

u22 = 7,00  

(2) 

u23 = 8,67  

(3) 

u24 = 10,00  

(4) 

n1 11 1n
u  11ny  21 1nu  21ny  31 1n

u  31ny  41 1nu  41ny  

1 6,4 0,572060 6,1 0,838889 9,2 0,903488 7,3 1,3301716 

2 6,5 0,648202 7,7 0,628602 12,2 0,916698 7,4 1,0848920 

3 11,2 0,366938 8,9 0,666820 12,6 0,891862 11,3 1,0875064 

4 11,6 0,840378 14,2 0,529828 13,9 0,780235 11,2 1,0617987 

5 15,0 0,357619 14,7 0,369640 15,8 0,849268 11,4 1,2248224 

6 16,2 0,252894 17,5 0,393696 15,9 0,676236 11,4 1,0097338 

7 20,9 0,191408 17,6 0,423408 17,0 0,665933 11,4 1,1105566 

8 21,0 0,211237 19,5 0,424521 17,7 0,798994 11,9 1,0569201 

9 21,3 0,057237 19,6 0,359882 18,0 0,753221 14,4 0,9896686 

10 26,2 0,240598 27,0 0,484021 15,1 1,089871 14,4 0,8944089 

11 28,4 0,162991 27,3 0,386058 20,5 0,651258 14,4 0,9357480 

12 28,6 0,249399 27,8 0,493950 20,9 0,764347 18,8 0,9650770 

13 29,1 0,217105 28,2 0,487298 26,2 0,634033 19,1 0,9483388 

14 36,4 0,343625 28,6 0,490247 26,6 0,657183 19,2 0,8510747 

15 36,3 0,290017 29,4 0,411630 27,4 0,630113 23,5 0,9645854 

16 42,8 0,373851 29,6 0,408095 27,6 0,588806 23,2 0,9037284 

17 42,6 0,263002 37,8 0,453555 33,1 0,796697 26,9 0,8480748 

18 43,9 0,331933 37,9 0,416033 33,0 0,712234 27,2 0,8781611 

19 45,1 0,414180 41,3 0,539947 35,1 0,716245 27,5 0,9828131 

20 47,0 0,494438 41,5 0,549499 37,1 0,633244 27,7 0,9799704 
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Identification algorithm
on the first stage:
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n2 1 2 3 4 

22nu  5,33 7,00 8,67 10,0 
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( ) 







== )2(

2

2

)3(

2

)1(

2

2221 ,







u
u

Performance index on the second stage:

( ) ( )

( ) ( ) .lnlnln

lnln

2

2

22121

2

2

)2(
2

221212

1

2

2
)2(

2
)3(

2
)2*(

1

2)1(
2

)1*(

1

1

2

2
)3(

2
)2*(

1

2)1(
2

)1*(

122





=

=






 −−+−=





























−+−=

N

n

nnNnN

N

n

nnNnNN

u

uQ






 

u2 [Hz] 
  )2(

1
)1(

1 ,  

u2 [Hz] 
  )2(

1
)1(

1 ,  



Two stage identification and it’s 
applications









































=

















=


=

2

2

2

2

2

2

212

2

2

2

2

2

)2(

2

2

)1(

2

1

)1(*

1
1

)3(*

2

)2(*

2

)1(*

2

*

2

exp
N

N

N

N

N

n

nNN

N

N

N

N

B

A

B

A






































−=  

== =

2

2

2

2

2

2

2

212212

1

2

1 1

)2(*

1

2

2

)2(*

1

)1(

2 lnln
1

lnln
N

n

n

N

n

N

n

nnnnnN u
N

uA 

( )



























−



























= 

====

2

2

221

2

2

2

2

2

21

2

2

22

1

2

)2(*

1

1

2

21

)2(*

1

1

2

2

2

)2(

2 lnlnln
1

lnln
1 N

n

nnn

N

n

n

N

n

nn

N

n

nN uu
N

u
N

A 

( ) 
= =














−=

2

2

2

2

222

1

2

1

2

2

2

22 ln
1

ln
N

n

N

n

nnN u
N

uB

Identification algorithm
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• Direct approach

The model:
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• Direct approach

Identification algorithm:
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• Direct approach

Approach 2  
( )1
2  

( )2
2  

( )3
2  ( )221

NNQ  

Two-stage 2 =
*
2 2N  –0,236 1,624 0,043 1,053014 

Direct 2 =
*
2 21

~
NN  –0,237 1,826 0,029 1,016943 
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Final remarks

• Identification of complex systems

• Identification with restricted measurement 
possibilities

• Local and global identification

• Globally optimal model with respect local 
quality
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